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Preface

Continuing the series of workshops on ”Reliability Theory” in the Ferdowsi University of Mash-
had and Eight Seminars at the University of Isfahan (2015), University of Tehran (2016), Fer-
dowsi University of Mashhad (2017), Shiraz University (2018), Yazd University (2019), Univer-
sity of Mazandaran (2020), University of Birjand (2021), and Ferdowsi University of Mashhad
(2022) we are pleased to organize virtually (online) the 9th Seminar on Reliability Theory and
its Applications” during 24-25 May 2023 at the Department of Mathematical Sciences, Isfahan
University of Technology. On behalf of the organizing and scientific committees, we would like
to extend a very warm welcome to all participants in this event. We hope that this seminar
provides an environment of useful discussions and will also exchange scientific ideas through
opinions. We wish to express our gratitude to the numerous individuals and organizations that
have contributed to the success of this seminar, in which around 100 colleagues, researchers, and
postgraduate students have participated. Finally, we would like to extend our sincere gratitude
to the administration of the Isfahan University of Technology, the Department of Mathematical
Sciences, Ferdowsi University of Mashhad, the ”Ordered Data, Reliability, and Dependency”
Center of Excellence, the Iranian Statistical Society, the Mathematic House, Islamic World
Science Citation Database (ISC), Snowa Tech Company, the Scientific Committee, the Execu-
tive Committee, and the students of the Department of Statistics at the Isfahan University of
Technology, for their kind cooperation.

The Organizing Committee
May, 2023
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Estimation of parameters of Kumaraswamy distribution

from progressively Type-I interval censored data using

EM algorithm

Ahmadi, M. V. 1

1 Department of Statistics, University of Bojnord, Bojnord, Iran

Abstract

EM algorithm is used to derive the maximum likelihood estimates of unknown param-
eters when the gathered data are progressively Type-I interval censored. It is assumed
that the lifetimes follow a Kumaraswamy distribution. Finally, a simulated data set is
analyzed for demonstrative purposes.

Keywords: EM algorithm, Kumaraswamy distribution, Maximum likelihood estimate,
Progressive Type-I interval censoring scheme.

1 Introduction

In reliability and life testing experiments, the failure times of all of units on the test due to
the time limitation or other restrictions may not be observed exactly. Also, in industrial life
testing and medical survival analysis, it is very often that the object is lost or withdrawn
before failure. Hence, the problem of occuring censored observations is quite commonly when
observing lifetime data. There are various types of censoring schemes. Among them, Type-
I and Type-II censoring schemes are the most common for considerations; see, for example,
David and Nagaraja [1]. Uner Type-I censoring, the test ceases at a pre-fixed time and under

1mv.ahmadi@ub.ac.ir
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Type-II censoring, the test terminates a pre-fixed number of failures. But, these two censoring
schemes do not allow for units to be removed from the test at points other than the final
termination point. When such an allowance is desirable, progressive censoring is suggested.
For a comprehensive review of progressive censoring, we refer the readers to Balakrishnan and
Aggarwala [2].

In practice, it is often impossible to inspect the lifetime testing process continuously, even
with censoring. But, the periodic inspection of the units on the test is feasible. That is, the
experimenter can only count the number of failures in a time interval instead of measuring failure
times exactly. Such a life test is called interval censoring. Combining progressive censoring and
interval censoring, a new censoring introduced by Aggarwala [3] and called progressive Type-I
interval censoring is obtained which is described briefly as follows. Suppose that n units are
placed on a test at time zero. Let t1 < · · · < tm be the pre-scheduled inspection times, where tm
is the termination time for the test. At the i-th inspection time ti, the number Xi of units failed
in the interval (ti−1, ti] is recorded and then Ri of surviving units are randomly removed from
the remaining units n −

∑i
j=1Xj −

∑i−1
j=1 Rj for i = 1, . . . ,m. Since the number of surviving

units at inspection time ti, say Yi, is a random variable and the number of units removed from
the test should not be greater than Yi, Ri can be a pre-determined percentage, say pi, of the
remaining surviving units at time ti. For example, under the pre-determined percentage values
p1, . . . , pk (pk = 1), the number of units removed at time ti can be considered as Ri = ⌊piYi⌋,
where ⌊w⌋ is the largest integer which is smaller than or equal to w. Alternatively, assuming
R1, . . . , Rm to be pre-determined non-negative integers, the number of surviving units removed
from the test can be considered as R∗

i = min(Ri, number of remaining units at time ti) for
i = 1, . . . ,m− 1 and R∗

m = number of surviving units at time tm. When R1 = · · · = Rm−1 = 0
and so Rm = n−

∑m
i=1Xi, this censoring scheme is called the Type-I interval censoring.

The progressively Type-I interval censored data have been considered by many authors for
the parametric inferences on different distributions. For example, Ashour and Afify [4], Arabi
Belaghi et al. [5], Lin et al. [6], Chen et al. [7], Ng and Wang [8], Teimouri and Gupta
[9], Singh and Tripathi [11], Du et al. [11] and Teimouri [12] compared different estimation
methods when the available data are progressively Type-II censored data coming from the
distributions such as exponentiated Weibull, Burr XII, log-normal, generalized exponential,
Weibull, Gompertz-Makeham, inverse Weibull, log-logistic and Chen, respectively.

Although progressive Type-I interval censored sampling is very applicable in lifetime ex-
periments, not much attention has been paid to due to the complicated calculations of the
corresponding likelihood function. The expectation-maximization (EM) algorithm is one of the
standard methods to obtain a stationary point of the likelihood function. This algorithm is
a very powerful tool in determining the maximum likelihood (ML) estimates of the unknown
parameters on the basis of the incomplete data such as progressively Type-I interval censored
data. Unlike the more traditional methods of computing the ML estimates such as the Newton-
Raphson method which are very sensitive to their initial parameter estimation values, the EM
algorithm is relatively robust against these values. Also, with the EM algorithm, it is not
required to calculate the first and second derivatives of the log-likelihood function. Usually the
calculations of the derivatives on the basis of the progressively censored data are complicated.
For more details on the EM algorithm, the readers may refer to Dempster et al. [13] and
McLachlan and Krishnan [14].

In this paper, we assume that the lifetimes follow the Kumaraswamy distribution proposed
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by Kumaraswamy [15]. This distribution is suitable for many natural phenomena whose out-
comes has lower and upper bound, for example, the heights and weights of individuals, scores
obtained on a test, atmospheric temperatures. The probability density function (PDF) and
cumulative distribution function (CDF) of the Kumaraswamy distribution with the first and
second shape parameters α and λ, respectively, are as follows

f(x) = αλxλ−1
(
1− xλ

)α−1
, 0 < x < 1, α, λ > 0, (1)

F (x) = 1−
(
1− xλ

)α
, 0 < x < 1, α, λ > 0, (2)

respectively. It can be shown that the failure rate function of the Kumaraswamy distribution
is an increasing function. Also, the Kumaraswamy distribution as a lambda-type distribution
is supported on the interval (0, 1). Jones [16] discussed the similarities and differences between
the lambda and Kumaraswamy distributions. Some of the advantages of the Kumaraswamy
distribution are that the CDF of this distribution has a closed form, quantiles of this distribu-
tion are easily attainable and one can easily generate random variables from this distribution.
The Kumaraswamy distribution attracted much attention in recent years. Seifi et al. [17] pro-
posed a method for maximizing the manufacturing yield, when the component values follow
a Kumaraswamy distribution. Reyad and Ahmed [18] obtained Bayes estimates for the shape
parameter α with known λ under the symmetric and asymmetric loss functions. Sindhu et
al. [19] investigated the Bayesian and non-Bayesian statistical inferences on the basis of the
Type-II censored samples from Kumaraswamy distribution. Moreover, the Bayesian and non-
Bayesian statistical inferences based on record values from the Kumaraswamy distribution has
been studied by Nadar et al. [20]. Recently, Kohansal and Nadarajah [21] derived the Bayesian
and non-Bayesian estimates of the stress-strength parameter under the Type-II hybrid progres-
sive censored samples coming from Kumaraswamy distributions. Also, see Mitnik [22], Wang
[23] and Kohansal [24].

The rest of the paper is organized as follows. In Section 2, the ML estimates for the
parameters α and β, based on progressively Type-I interval censored data are derived. Section
3 explains how the EM algorithm is used to obtain the ML estimates for the parameters.
Ultimately, a simulated censored data set is discussed for illustrative aims in Section 4.

2 Maximum likelihood estimates

Suppose that the progressively Type-I interval censored sample X1, . . . , Xm comes from a dis-
tribution with CDF F . Then, the likelihood function based on the observed sample is

Lp(θ) ∝
m∏
i=1

[F (ti)− F (ti−1)]
Xi [1− F (ti)]

Ri . (3)

Under the Kumaraswamy distribution with CDF (2), the likelihood function (3) is reduced to

Lp(θ) ∝
m∏
i=1

[(
1− tλi−1

)α − (1− tλi
)α]Xi [(

1− tλi
)α]Ri

.
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where θ = (α, λ). The corresponding log-likelihood function is

lnLp(θ) = constant +
m∑
i=1

Xi ln
[(
1− tλi−1

)α − (1− tλi
)α]

+ α

m∑
i=1

Ri ln
(
1− tλi

)
.

Taking derivative with respect to parameters α and λ and equating to zero, we have

∂

∂α
lnLp(θ) =

m∑
i=1

Xi

(
1− tλi−1

)α
ln
(
1− tλi−1

)
−
(
1− tλi

)α
ln
(
1− tλi

)(
1− tλi−1

)α − (1− tλi
)α

+
m∑
i=1

Ri ln
(
1− tλi

)
= 0, (4)

and

∂

∂λ
lnLp(θ) =α

m∑
i=1

Xi

tλi
(
1− tλi

)α−1
ln ti − tλi−1

(
1− tλi−1

)α−1
ln ti−1(

1− tλi−1

)α − (1− tλi
)α

− α

m∑
i=1

Ri
tλi ln ti(
1− tλi−1

) = 0. (5)

The ML estimates of α and λ are derived by solving (4) and (5) numerically. In next section,
we compute the ML estimates of these parameters using the EM algorithm.

3 EM algorithm

Let τij with j = 1, . . . , Xi be the lifetimes of the units failed in the interval (ti−1, ti] and ηij′ with
j′ = 1, . . . , Ri be the lifetimes of the units censored at the time ti for i = 1, . . . ,m. Then, the
likelihood function for the complete sample under the Kumaraswamy distribution with PDF
(1) is given by

Lc(θ) ∝
m∏
i=1

(
Xi∏
j=1

f(τij)

Ri∏
j′=1

f(ηij′)

)
= (αλ)n

m∏
i=1

(
Xi∏
j=1

τij

Ri∏
j′=1

ηij′

)λ−1

×
m∏
i=1

(
Xi∏
j=1

(
1− τλij

) Ri∏
j′=1

(
1− ηλij′

))α−1

.

Then, the associated log-likelihood function is obtained as

lnLc(θ) = constant + n lnα + n lnλ+ (λ− 1)
m∑
i=1

[
Xi∑
j=1

ln τij +

Ri∑
j′=1

ln ηij′

]

+ (α− 1)
m∑
i=1

[
Xi∑
j=1

ln
(
1− τλij

)
+

Ri∑
j′=1

ln
(
1− ηλij′

)]
. (6)
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On the basis of the complete sample, the ML estimates of α and λ are obtained by deriving
the log-likelihood function in (6) with respect to α and λ and equating to zero. Then, we have

∂

∂α
lnLc(θ) =

n

α
+

m∑
i=1

Xi∑
j=1

ln
(
1− τλij

)
+

m∑
i=1

Ri∑
j′=1

ln
(
1− ηλij′

)
= 0, (7)

and

∂

∂λ
lnLc(θ) =

n

λ
+

m∑
i=1

Xi∑
j=1

ln τij − (α− 1)
m∑
i=1

Xi∑
j=1

[
τλij ln τij

1− τλij

]

+
m∑
i=1

Ri∑
j′=1

ln ηij′ − (α− 1)
m∑
i=1

Ri∑
j′=1

[
ηλij′ ln ηij′

1− ηλij′

]
= 0. (8)

For computing the ML estimates of parameters α and λ using the EM algorithm, one requires
to perform two steps: expectation step (E-step) and maximization step (M-step). In order to
perform E-step, it is required to compute the conditional expectations which are

Ai(α, λ) = E
[
ln
(
1− τλij

) ∣∣ti−1 < τij ≤ ti
]
=

1

F (ti)− F (ti−1)

∫ ti

ti−1

ln
(
1− xλ

)
f(x) dx

=
α(

1− tλi−1

)α − (1− tλi
)α ∫ 1−tλi−1

1−tλi
uα−1 lnu du, (9)

Bi(α, λ) = E
[
ln τij

∣∣ti−1 < τij ≤ ti
]
=

1

F (ti)− F (ti−1)

∫ ti

ti−1

lnx f(x) dx

=
αλ−1(

1− tλi−1

)α − (1− tλi
)α ∫ 1−tλi−1

1−tλi
uα−1 ln(1− u) du, (10)

Ci(α, λ) = E

[
τλij ln τij

1− τλij

∣∣∣∣ ti−1 < τij ≤ ti

]
=

1

F (ti)− F (ti−1)

∫ ti

ti−1

xλ lnx

1− xλ
f(x) dx

=
αλ−1(

1− tλi−1

)α − (1− tλi
)α ∫ 1−tλi−1

1−tλi
uα−2(1− u) ln(1− u) du, (11)

A∗
i (α, λ) = E

[
ln
(
1− ηλij′

) ∣∣ηij′ ≥ ti
]
=

1

1− F (ti)

∫ 1

ti

ln
(
1− xλ

)
f(x) dx

=
α(

1− tλi
)α ∫ 1−tλi

0

uα−1 lnu du, (12)

B∗
i (α, λ) = E

[
ln ηij′

∣∣ ηij′ ≥ ti
]
=

1

1− F (ti)

∫ 1

ti

lnx f(x) dx

=
αλ−1(
1− tλi

)α ∫ 1−tλi

0

uα−1 ln(1− u) du, (13)
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and

C∗
i (α, λ) = E

[
ηλij′ ln ηij′

1− ηλij′

∣∣∣ ηij′ ≥ ti

]
=

1

1− F (ti)

∫ 1

ti

xλ lnx

1− xλ
f(x) dx

=
αλ−1(
1− tλi

)α ∫ 1−tλi

0

uα−2(1− u) ln(1− u) du. (14)

Using (1) to (14) and taking expectations of both sides of (7) and (8), we have

n

α
+

m∑
i=1

[
XiAi(α, λ) +RiA

∗
i (α, λ)

]
= 0, (15)

and

n

λ
+

m∑
i=1

[
XiBi(α, λ) +RiB

∗
i (α, λ)

]
− (α− 1)

m∑
i=1

[
XiCi(α, λ) +RiC

∗
i (α, λ)

]
= 0. (16)

The M-step deals with maximizing (15) and (16) with respect to the parameters α and λ.
Hence, if the estimates of α and λ at the k-th stage of the iteration are α̂(k) and λ̂(k), the
updated estimates of α and λ at the (k + 1)-th stage are computed by the formulas

α̂(k+1) =− n

(
m∑
i=1

[
XiAi

(
α̂(k), λ̂(k)

)
+RiA

∗
i

(
α̂(k), λ̂(k)

)])−1

,

and

λ̂(k+1) = n

((
α̂(k+1) − 1

) m∑
i=1

[
XiCi

(
α̂(k+1), λ̂(k)

)
+RiC

∗
i

(
α̂(k+1), λ̂(k)

)]
−

m∑
i=1

[
XiBi

(
α̂(k+1), λ̂(k)

)
+RiB

∗
i

(
α̂(k+1), λ̂(k)

)])−1

.

The EM algorithm is repeated until the desired convergence is satisfied. The desired convergence
is difined as |α̂(k+1) − α̂(k)| + |λ̂(k+1) − λ̂(k)| < ϵ for a small value of ϵ > 0. It is guaranteed
that the EM algorithm will always converge to a local maximum of the likelihood function. For
more details, see, for example, Rud [25], Jordan [26] and Wu [27]. The reasonable initial values
for α̂(0) and λ̂(0) are the ML estimates of these parameters based on the pseudo-complet sample
by replacing the observations τij (j = 1, . . . , Xi) and ηij′ (j

′ = 1, . . . , Ri) by ti for i = 1, . . . ,m.

4 Illustrative example

The objective of this section is to analyse a simulated data set. We use the following algorithm
to simulate the numbers of failures observed Xi in intervals (ti−1, ti] for i = 1, . . . ,m, from an
initial sample of size n placed on a life test at time t0 = 0.
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Assuming X0 = 0 and R0 = 0, we have

Xi| (Xi−1, Ri−1, . . . , Xi, Ri) ∼ Binomial

(
n−

i−1∑
j=1

(Xj +Rj) , qi

)
,

for i = 1, . . . ,m, where

qi =
F (ti)− F (ti−1)

1− F (ti−1)
.

Then, a progressively Type-I interval censored sample is generated using the following algo-
rithm:

• Let Let N = 0 and R = 0.

• For i from 1 to m do

1. generate Xi from the binomial distribution with parameters n−N −R and qi,

2. compute R∗
i = ⌊pi (n−N −R−Xi)⌋ or R∗

i = min (Ri, n−N −R−Xi),

3. let N = N +Xi an R = R +R∗
i ,

4. if i < m and n−N −R ̸= 0, go to Step (1); otherwise, stop.

For simulating a progressively Type-I interval cencored sample, we considered n = 30 and
m = 5 with inspection times t1 = 0.1, t2 = 0.2, t3 = 0.4, t4 = 0.6 and t5 = 0.8, and censoring
scheme (p1, . . . , pm) = (0.25, 0.25, 0.5, 0.5, 1). Also, we supposed α = 3 and λ = 2. Then, the
simulated values are (X1, . . . , Xm) = (2, 2, 4, 5, 0) and (R∗

1, . . . , R
∗
m) = (7, 4, 5, 0, 1). Using this

censored sample and letting ϵ = 0.001, the ML estimates for α and λ via the EM algorithm
need 42 iterations to converge to 2.1814 and 1.5755, respectively.
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Abstract

This paper, investigates the problem of testing that non-negative random variables
X and Y are independent against the alternative that Y stochastically increasing (SI) in
X. Two new statistical tests, based on the kernel density estimator, are proposed. Their
limiting distributions are derived. The finite-sample performance of the proposed tests in
comparison with various alternative tests, is studied.

Keywords: Stochastically increasing, Kernel estimation, Empirical processes, Wiener
process, Brownian bridge process, Copula function.

1 Introduction

Establishing dependence relations between random variables is one of the most widely studied
subjects in probability and statistics and have shown to be very useful tool in insurance, actu-
arial science and various aspects of reliability. Many studies in statistics are designed to explore
the relationship between random variables X and Y , say, and specially to determine whether
X and Y are independent or dependent. The simplest way to obtain the dependence structure
between two random variables may be calculating the value of their covariance. However, the
measure of covariance is usually used to obtain the linear dependency relationship between
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them. Therefore, it has been defined many notions of positive dependences. We may have seen
abbreviations like these totally positive of order 2 (TP2), stochastically increasing (SI), right
tail increasing (RTI), and so on. For discussions and applications on the various notions of
dependence, we refer to Lehmann (1966), Esary and Proschan (1972), Harris (1970) and Block
and Ting (1981) and for a comprehensive review of concept of dependence the reader is referred
to Lai and Xie (2006).

In the reliability literature, the components of a system are assumed to be statistically inde-
pendent. However, in practices, the components of a system might be dependent because of the
environmental factors or the shared load, and hence the failure of one affects the performance
of the other components. Therefore, an engineer may be interested in the dependence rela-
tionship between components of the system reliability and the environment factor. Therefore,
the concept of stochastic dependence between two or more random variables play an important
part in statistics. Various notions of dependence are motivated from application in statistical
reliability (cf, Barlow and Proschan (1981)).

Let (X,Y ) be an absolutely continuous bivariate random vector with marginal distribution
functions F and G respectively, and joint distribution function H(x, y), (x, y) ∈ R+ × R+,
where R+ = (0,∞). The notion of SI dependence between random variables X and Y is
denoted by SI(Y |X), which is introduced as follows.

Definition 1.1. Random variable Y is said to be stochastically increasing in x, x > 0 for all
y ∈ R+, if, for every y ∈ R+, P (Y > y|X = x) is increasing in x.

2 The test statistics

Let H(x, y) be the joint probability distribution function of an absolutely continuous random
vector (X,Y ) defined on some probability space (Ω,R2,P) where (X, Y ) takes values on R+×
R+, and F (x) and G(y) be corresponding marginal distribution functions. If SI(Y |X) hold
then

P(Y > y|X = s) ≥ P(Y > y|X = t); whenever s ≥ t > 0.

For any fixed y > 0, δ(s, t; y) is defined by

δ(s, t; y) = P(Y > y|X = s)− P(Y > y|X = t); whenever s ≥ t > 0. (1)

Based on it, we define the measure of deviation from H0 (hypothesis that X and Y are inde-
pendent) to H1 (hypothesis thata SI(Y |X) hold) by

∆(F,G)(y) = E[δ(X2, X1; y)|X2 ≥ X1].

We have that, for any y > 0,
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∆(F,G)(y) =

∫ ∫
s≥t

δ(s, t)dF (t)dF (s)

=

∫ ∫
s≥t

G(y|s)dF (s)dF (t)−
∫ ∫

s≥t
G(y|t)dF (t)dF (s)

=

∫
G(y|s)F (s)dF (s)−

∫
G(y|t)F (t)dF (t)

=

∫
G(y|x)F (x)dF (x)−

∫
G(y|x)F (x)dF (x)

=

∫
G(y|x)(2F (x)− 1)dF (x), (2)

Notice that ∆(F,G)(y) = 0 under H0, and ∆(F,G)(y) > 0 under H1.
Hence, we propose tests based on the following two measures

∆∗(F,G) = sup
y∈R+

∆(F,G)(y). (3)

and

∆∗∗(F,G) =

∫
∆(F,G)(y)dG(y). (4)

Now, based on a sample of independent identically distributed random vectors (X1, Y1),
(X2, Y2) , ..., (Xn, Yn) with distribution function H(x, y), we construct the test statistics for
testing H0 against H1. To estimate the conditional survival distribution function, we use the
Nadaraya-Watson approach proposed by Nadaraya (1964) and Watson (1964). More details
about it can be found in Simonoff (1996), Li and Racine (2007), Hall et al. (1999) and Cai
(2002). It is given by

Gn(y|x) =
∑n

j=1 k(
x−Xj
an

)I(Yj > y)∑n
j=1 k(

x−Xj
an

)
, (5)

where an is a is a sequence of positive real numbers, which are often referred to as bandwidth in
the literature (see Silverman (1986) for more details), and k is so called kernel function. Silver-

man (1986) for more details). The kernel density estimator of f(x), fn(x) =
1
nan

∑n
j=1 k(

x−Xj
an

),
appeared in the denominator (5).

A natural estimator of ∆(F,G)(y) is now given by

∆(Fn,Gn)(y) =

∫
Gn(y|x)(2Fn(x)− 1)dFn(x),

where Fn(x) =
1
n

∑n
i=1 I(Xi ≤ x) is empirical distribution function. Now we have all ingredients

to construct test statistics based on the measures of departure (3) and (4), We propose the
supremum-type statistic

∆∗
(Fn,Gn) = sup

y∈R+

∆(Fn,Gn)(y),
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and the integral-type statistic

∆∗∗
(Fn,Gn) =

∫
∆(Fn,Gn)(y)dGn(y). (6)

From (5) and (2), we have

∆(Fn,Gn)(y) =
1

n2

∑
i,j,l

k(
Xi−Xj
an

)I(Yj > y)(2I(Xi ≥ Xl)− 1)∑n
j=1 k(

Xi−Xj
an

)
. (7)

Hence, the statistic (6) can be expressed in following form, much more suitable for computation.

∆∗∗
(Fn,Gn) =

∫
1

n2

∑
i,j,l

k(
Xi−Xj
an

)I(Yj > y)(2I(Xi ≥ Xl)− 1)∑n
j=1 k(

Xi−Xj
an

)
dGn(y)

=
1

n3

∑
i,j,l

k(
Xi−Xj
an

)
∑n

k=1 I(Yj > Yk)(2I(Xi ≥ Xl)− 1)∑n
j=1 k(

Xi−Xj
an

)

=
1

n3

∑
i,j,l

k(
Xi−Xj
an

) [
∑n

k=1 I(Yj ≥ Yk)− 1] (2I(Xi ≥ Xl)− 1)∑n
j=1 k(

Xi−Xj
an

)

=
1

n3

∑
i,j

k(
Xi−Xj
an

)(Sj − 1)(2Ri − n)∑n
j=1 k(

Xi−Xj
an

)

where Ri = Rank(Xi) =
∑n

l=1 I(Xi ≥ Xl) and Sj = Rank(Yj) =
∑n

k=1 I(Yj ≥ Yk).

Naturally, we take large values of test statistics to we significant. As a consequence, both
tests are consistent against considered class of alternatives.

3 Asymptotic distribution of the test statistics

In this section, we examine asymptotic properties of our test statistics. We use the notation
“⇒” to indicate convergence in distribution. Before we state main result, we introduce some
assumptions.

Assumption A:

• Let h(x, y) be the density function corresponding to H(x, y). Suppose that h(x, y) has
the bounded first and the second partial derivative with respect to x, which are denoted
by h(1)(x, y) and h(2)(x, y), respectively.

• Let the conditional survival function of Y given X = x be G(y|x), and g(y|x) be the
corresponding conditional density function of Y given X = x.

• Let m(x, y) =
∫
I(u ≤ y)h(x, u)du, be uniformly bounded up until the second derivative.

• Let the marginal density functions of X and Y , denoted by f(x) and g(y), respectively
are uniformly continuous and bounded up to the second derivative.
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Assumption B:
Suppose, we have a symmetric and bounded kernel density function k : R → S ⊂ R that

satisfies:

•
∫
k(s)ds = 0 and

∫
k(2s)ds <∞;

• sup |k(s)| <∞, and
∫
|k(s)|ds <∞ ,and

∫
[k(s)]2+δ ds <∞, for some δ > 0;

•
∫
|k′(s)|ds <∞.

Assumption C:
Suppose that an be a sequence of positive real numbers that satisfy the following conditions:

• an → 0, as, n→∞.

• na2n →∞, as, n→∞.

• na5n → 0, as, n→∞.

The following theorem gives us the asymptotic behavior of the empirical process {∆(Fn,Gn)(y), y >
0}.

Theorem 3.1. Under assumptions A, B and C, it holds that

√
nan

(
∆(Fn,Gn)(y)−∆(F,G)(y)

)
⇒ Q(y); whenever y ∈ R+, (8)

in D(0,∞), where, Q(y) = k
1
2
0

∫
[f(x)]−

1
2 (2F (x)− 1)B(G(y|x))dF (x), k0 =

∫
k2(s)ds and B is

a standard Brownian Bridge process on the unit interval [0, 1].

As a corollary, we get the asymptotic distributions of test statistics.

Theorem 3.2. Under assumptions A, B and C, it holds that

√
nan

(
∆∗

(Fn,Gn) −∆∗
(F,G)

)
⇒ sup

y∈R+

Q(y),

where,

sup
y∈R+

Q(y) = k
1
2
0 sup
y∈R+

∫
[f(x)]−

1
2 (2F (x)− 1)B(G(y|x))dF (x).

Notice that, under the null hypothesis i.e. X and Y are independent, supy∈R+ Q(y) can be
rewritten as follows

sup
y∈R+

Q(y) = k
1
2
0 sup
y∈R+

∫
[f(x)]−

1
2 (2F (x)− 1)B(G(y))dF (x)

= k
1
2
0 sup
y∈R+

B(G(y))

∫
[f(x)]−

1
2 (2F (x)− 1)dF (x).

Next, we establish the asymptotic distribution of statistic ∆∗∗
(Fn,Gn)

under the null hypothesis.
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Theorem 3.3. Under assumptions A, B, C and the null hypothesis, it holds that

k
− 1

2
0 Γ−1√nan

(
∆∗∗

(Fn,Gn) −∆∗∗
(F,G)

)
⇒ N

(
0,

1

12

)
, as, n→ 0.

where Γ =
∫
[f(x)]−

1
2 (2F (x)− 1)dF (x).

Proof. From Theorem 3.1 we have

√
nan

(
∆∗∗

(Fn,Gn) −∆∗∗
(F,G)

)
⇒
∫
Q(y)dG(y)

= k
1
2
0

∫
[f(x)]−

1
2 (2F (x)− 1)dF (x)

∫
B(G(y))dG(y)

= k
1
2
0 Γ

∫ 1

0

B(u)du.

It can be easily shown that
∫ 1

0
B(u)du is centred normal random variable with variance 1

12
.
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Abstract

One of the factors that is influential in mortality rates and can change this rate, is
shock which people can experience in their lives. With consideration of a stochastic pro-
cess, non-homogeneous poisson process, some of these mortality rates with shocks have
defined and we aim to use these processes and their information and reliability to predict
the number of people who are influenced by this process with a specific rate, at a special
age; So we use some of machine learning methods for our purpose and find the best one
of them.

Keywords: Mortality rate, Shock, Stochastic process, Reliability, Machine learning.

1 Introduction

There are various stochastic modeling of aging of organisms in the literature. For example, in
vitality models (Li and Anderson 2009), deterioration is modeled by a stochastic process (e.g.,
by a Wiener process with negative drift), describing the non-monotone decrease in vitality of
organisms. However in another consideration, we employ a different reasoning and instead of
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dealing with direct deterioration of vital parameters, we consider mortality rate as an increasing
stochastic process and describe stochastic aging of organisms. We will consider a specific mor-
tality rate process governed by the non-homogeneous Poisson process of point events (shocks)
and will show that, although the sample paths of the unconditional mortality rate process are
monotonically increasing, the population mortality rate can decrease with age. There are some
real examples of these decreasing mortality rates such as Carey et al. (1992) for the population
of medflies and recent analysis of human populations at advanced ages exhibit deceleration and
leveling off the Gompertz mortality curve at advanced ages (Kannisto et al. 1994; Missov and
Finkelstein 2011). Thus this introduced model enables to analyze and interpret the shape of
the resulting population mortality rate and its deceleration with age.

For the first time the idea of using shocks modeling for describing patterns of mortality rates
from the famous paper by Strehler and Mildvan (1960) was introduced where the organism is
exposed to the Poisson process of shocks that are interpreted as demands for energy, during
illnesses or disorders, whereas death occurs when the magnitude of this demand exceeds the
current vitality of an organism. So with using this model, the rate of mortality in Gompertz
model that was always with this increased pattern, could be modified.

To consider heterogeneity in mortality rates rather than just increasing models for all of
the organisms, some models have introduced with papers by Beard (1959) and Vaupel et al.
(1979), and they used a multiplicative gamma-Gompertz model was defined as the following
mortality rate process

µt = Zaebt (1)

The random variable Z is often called frailty and it describes the fixed heterogeneity of
population assigned at t = 0 and not changing in time. However for having a modified model
we consider the model which will introduce in the next section that is known as a evolving
heterogeneity and it is not only different for one person to another one but also various during
every person life for their different experiences.

We use the information and reliability function of these models and consider some simula-
tions for time of deaths based on these models; then based on various machine learning methods
we will predict death for a new person in a specific age, while we know they have a special rate
of this stochastic processes and shocks.

2 Introduction of the model

While there are multiplicative and additive types for hazard rates, with considering an additive
model, a specific mortality rate is introduced as the following

µt = µ0(t) + ηN(t) (2)

and with conditioning on survivors, another model can describe that is useful for deceleration
mortality rates with age

{µt|T > t} = µ0(t) + η{N(t)|T > t} (3)

Where µ0(t) is a background mortality rate that models the common environment for organisms.
Therefore, crucial term will be stochastic ηN(t).

26



η is a deterministic jump on each event from the point process. Thus the damage incurred
by organism from a shock is translated into a jump in the corresponding mortality rate. In
other words, when each shock happens, we have η unit increasing on the mortality rate.
{N(t), t ≥ 0} is a point stochastic process. We will assume that it is the nonhomogeneous

Poisson process (NHPP) with rate λ(t). For convenience, and in line with some existing models
and based on some papers (Strehler and Mildvan 1960; Finkelstein 2008; Cha and Mi 2007),
we will use the term shocks for events from this process.

With expectation of the (2), we will have

E(µt) = µ0(t) + ηE(N(t))

and as we know, the N(t) is a non-homogeneous Poisson process so

E(N(t)) =

∫ t

0

λ(x)dx

and therefore

E(µt) = µ0(t) + η

∫ t

0

λ(x)dx. (4)

Applying the operation of mathematical expectation with respect to both sides of (2) results
in the above expression for the population mortality rate.

In the next section we will use the information of this model to simulate the times and
considering machine learning methods on them.

3 Simulation and using machine learning methods

To simulate the time of deaths for some people who are influenced by shocks based on the
(2) model, with knowing the laws and relationships between Cumulative distribution function,
Reliability function and Hazard rate, we have (u is the random sample from the Uniform
distribution)

F (t) = 1−R(t) = 1− exp(−
∫ t

0

h(x)dx) = u (5)

In this general equation h(x) is the hazard rate and in our work this rate is mortality rate and
in other words, it is E(µt). So based on (2) and (5) we have

exp(−
∫ t

0

(µ0(t) + η

∫ t

0

λ(u)du)dx) = 1− u = U (6)

Now with considering different λ(x) that is the rate of our stochastic process, we will reach
the time of deaths for people based on that process.(Who are expriencing shocks based on that
specific process)
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Example 3.1. With having the homogeneous Poisson process and λ(x) = λ, µ0(t) = 0 and
η = 1, based on the (6) we have

exp(−
∫ t

0

λxdx) = U (7)

And then with λ(x) = λ = 1 and solving the above equation

exp(−t2

2
) = U (8)

Now based on the above equation and solving it we have the time of death for 100 sample
of individuals. At the first step we have the plot of number of these people in every age, in
other words how many people have died in a special age.(For each age, 10 times repetition has
done and the mean of them has calculated).

Figure 1: Frequency of people under shocks based on NHPP with λ(x) = λ = 1

To predict the number of deaths in a new age, we use various machine learning methods to
predict it. We consider some main methods for this aim

Smoothing splines. In fitting a smooth curve to a set of data, what we really want to
do is find some function, say g(x), that fits the observed data well: that is, we want RSS =∑n

i=1(yi − g(xi))
2 to be small. However, there is a problem with this approach. If we dont put

any constraints on g(xi), then we can always make RSS zero simply by choosing g such that
it interpolates all of the yi. Such a function would woefully overfit the datait would be far too
flexible. What we really want is a function g that makes RSS small, but that is also smooth.
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How might we ensure that g is smooth? There are a number of ways to do this. A natural
approach is to find the function g that minimizes

n∑
i=1

(yi − g(xi))
2 + λ

∫
g′′(t)2dt (9)

where λ is a non-negative tuning parameter. The function g that minimizes (9) is known as a
smoothing spline.

Optimal spline. In this method we use optimum smoothing splines with using N-fold
cross-validation(that is a resampling method that uses different portions of the data to test and
train a model on different iterations) and in another way with generalized cross-validation.

Local Regression(LOESS). This method is a different approach for fitting flexible non-
linear functions, which involves computing the fit at a target point x0 using only the nearby
training observations. There is an algorithm for this method

Algorithm. Local Regression At X = x0

1. Gather the fraction s = k/n of training points whose xi are closest to x0.
2. Assign a weight Ki0 = K(xi, x0) to each point in this neighborhood, so that the point fur-
thest from x0 has weight zero, and the closest has the highest weight. All but these k nearest
neighbors get weight zero.
3. Fit a weighted least squares regression of the yi on the xi using the aforementioned weights,
by finding β̂0 and β̂1 that minimize

n∑
i=1

Ki0(yi − β0 − β1xi)
2 (10)

4. The fitted value at x0 is given by f̂(x0) = β̂0 + β̂1x0.

In order to perform local regression, there are a number of choices to be made, such as how
to define the weighting function K, and whether to fit a linear, constant, or quadratic regression
in Step 3. While all of these choices make some difference, the most important choice is the
span s, which is the proportion of points used to compute the local regression at x0, as defined
in Step 1 above. The span plays a role like that of the tuning parameter λ in smoothing splines:
it controls the flexibility of the non-linear fit.

Now we use these methods on results and plot of Example 3.1.
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(a) Smothing splines (b) Local regression

Figure 2: Machine learning methods when λ(x) = λ = 1

Figure 3: Optimal splines when λ(x) = λ = 1

Example 3.2. Suppose λ(t) = λt and then we have a non-homogeneous Poisson process. with
µ0(t) = 0, η = 1 and λ = 1, so based on the (6) we have

exp(−
∫ t

0

1

2
λt2dx) = exp(−t3

6
) = U (11)

And based on solving this equation and using machine learning methods we have these plots.
(figure (4))

30



Figure 4: Comparing machine learning methods when the rate of NHPP is λ(t) = λt

Example 3.3. In the paper of Cha and Finkelstein (2016) we can consider our introduced
mortality rate equal to the general Gompertz model and based on this equation we will reach
the suitable λ. In other words, we have

µ0(t) + η E[N(t)] = a exp{bt} = a+ a(exp{bt} − 1) (12)

And then the rate of our process will be

E(N(t)) = a η−1(exp{bt} − 1) −→ λ(t) = abη−1exp{bt}

With considering a = 0.1, b = 2 and η = 1 we must solve the following equation and then the
frequency of people who are died based on this specific process is based on the figure (1) and
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we can see our various machine learning methods on them.

exp(−0.1((exp(2t
2
))− (

1

2
))) = U (13)

Figure 5: Comparing machine learning methods with considering Gompertz model when the
rate of process is λ(t) = abη−1exp{bt}

4 Main results

In this paper, we consider a model for mortality rate that solves some of problems in the
classic Gompertz model; with considering shocks that people expreincing and non-homogeneous
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poisson process to show these shocks we have an evolving heterogenity on the population rather
than just increasing model for all of the people in the Gompertz model. The usefulness of this
model is in this model every person has a mortality rate of their own and it may be completely
different from others.

After introducing this additive model, based on some of equations and with simulation we
simulated the time of deaths for people in three processes based on our introduced model and
used different machine learning methods to predict the number of people who will die in a
specific age. However, in some of these examples the optimal splines have a good results, but
consideration of just Local regression method can be enough for us and even the λ = 0.1 is
suitable rather than rates smaller than it and having a more flexible method. Therefore, with
having this method when we want predict the number of people died in an age that we have
not it, we can use this method to predict it.
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Abstract

Delay or stop in children’s growth is referred to as failure to thrive (abbreviated as
FTT) which leads to adverse effects such as increased mortality, reduced learning, cog-
nitive, physical, and emotional disability, and other related illnesses. To date, different
studies have been carried out in this field and factors affecting growth failure have been
identified. Stopping breast feeding, teething, urinary and respiratory tract infection, fever,
diarrhea, and malnutrition are identified as the most important factors affecting failure to
thrive. Most of these studies apply common regression models; however, multilevel regres-
sion models involve the random effects model which allows taking genetic and individual
factors into account. In the present study, given that the data were longitudinal and
multilevel regression models were used for data analysis, the individual characteristics of
children were identified as being among the factors affecting failure to thrive. Accordingly,
it can be argued that, in identical conditions, children develop different levels of growth
disorder.

Keywords: Multilevel Model, Regression Model, Longitudinal Data, Growth Disor-
der.
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1 Introduction

Delay or stop in children’s growth, dubbed failure to thrive (abbreviated as FTT), is some-
times observed among children under five years of age and leads to adverse effects such as
increased mortality, reduced learning, cognitive, physical, and emotional disability, and other
related illnesses [1]. To put it differently, FTT can be defined as slower-than-expected physical
growth [2]. However, it is worth mentioning that all underweight children are not necessarily
afflicted with FTT [3]. Reasons leading to the development of growth failure can be subsumed
under two major categories, namely organic and nonorganic reasons. Organic reasons include
factors such as suffering from acute or chronic disease (such as infection) interfering with the
absorption, metabolism, nutrient intake or increasing energy requirements (such as asthma).
The nonorganic reasons, on the other hand, are mostly concerned with environmental, mental,
and social factors such as not receiving enough food. In 80% of cases, children are afflicted
with growth failure due to nonorganic factors such as impoverishment, decreased appetite, be-
ing born in large and extended families, insufficient mother milk (due to undernourishment,
psychological stress, etc.), mother’s insufficient and poor knowledge regarding correct feeding
techniques, and parental employment status [4,5]. Nonorganic FTT mostly occurs in infants
under one year of age. In some cases, FTT is identified to be multifactorial or mixed, that
is organic and nonorganic reasons occur in tandem. Most of the researches conducted in this
connection reveal that factors such as not receiving sufficient nutrients, inappropriate diet, and
infectious diseases, especially fever and diarrhea, which are common among children, are among
the most common factors in growth failure development. As the findings of most studies indi-
cate, diarrhea is more effective than other factors on the weight faltering of children [6-8]. Three
kinds of FTT can be distinguished. In the first type, height and head diameter is normal but
weight is below normal which can be due to undernutrition or an acute disorder. Weight is the
most sensitive indicators in identifying FTT. If child’s body does not receive enough nutrients,
it uses fat or even muscle mass to provide the required nutrients. Decreased weight is often
indicative of malnutrition. However, it should be noted that children lose weight within the first
10-15 days after their birth which can be attributed to losing body water; thus, it is a normal
condition. In the second type of FTT, head diameter is normal but weight and height are below
normal which might be due to endocrine disorders, genetically short stature or bone dystrophy.
Finally, in the third type of FTT, weight, height, and head diameter are below normal. This
type of FTT results from intrauterine growth retardation, nervous system defects, intrauterine
infections, etc. If both parents have short stature, child is very likely to have genetically small
stature and it cannot be attributed to malnutrition. However, in some studies, malnutrition is
introduced as the leading cause of FTT which primarily affects children’s weight and then, their
head diameter [9]. Nutritionists can also be considered to be effective in that they can provide
parents with constructive advice regarding children’s nutrition and feeding techniques and their
appropriate feeding time [10]. In the present study, in line with the bulk of research conducted
in this regard, weight disorder is considered as the growth failure indicator. However, investi-
gating other factors such as parent educational level, parental employment status, number of
children, frequent attendance and care, and mother’s general knowledge regarding childcare is
also of paramount importance [1]. Growth failure is a global problem and, according to the
World Health Organization statistics, more than 30% of children younger than two years of age
are afflicted with growth failure, and, from among these children, 80% have decreased height
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growth and 20% are underweight [11]. According to the conducted researched in this field,
FTT is more common among children in developing countries and, in most of these countries,
children and infants’ physical growth is below the international standards. To the researchers’
best knowledge, the last piece of research carried out in this area in Iran dates back to 1998.
The findings of this study revealed that 12.8% of children under five years of age are stunted
for their age, 13.7% are severely or moderately underweight, and 4.8% are underweight. From
birth, as age increases, the level of being underweight increases such that, at the age of two, it
reaches its peak. Given the prevalence of growth failure and the adverse effect it might have
on children’s future, more research needs to be carried out in this connection [6]. Most of the
data in the fields of economics, humanities, and biology are clustered or hierarchical. Heredi-
tary studies, for example, deal with hierarchical data in that children are grouped into families.
Children of the same family are similar to each other in terms of physical and mental character-
istics, compared to members of other populations. One of the important factors in hierarchical
data is the correlation between observations and, accordingly, the assumption of independence
of observations is not satisfied [12-14]. Longitudinal studies which are extensively used in the
field of medicine, economy, psychology, and behavioral science are developing and can be sub-
sumed under the rubric of this type; thus, the independence of observations assumption is not
satisfied for longitudinal and repeated measures data. One of the distinctive characteristics of
longitudinal studies is repeated measurement of various subjects during different time points
and the time effects and variations for each subject can be separated from group effects [15-
18]. Given that there is a correlation between repeated measures, using common regression
models whose major premise is independence of observations, leads to biased estimates with
low precision. Accordingly, to analyze the data, models, taking the hierarchal structure and
correlation between data into consideration, should be deployed [19-24]. Multilevel methods
are generalizations of the generalized linear models in which, besides the response variable,
regression coefficients are modeled. This method is an effective method in modeling nested
and longitudinal data and aims at modeling the response variable as a function of independent
variable in more than one level [25-29].

In the present study, the collected data were longitudinal and they were characterized by
lack of independence of observations and correlation between a child’s measures during different
time points. This characteristics prohibits using common statistical methods such as the linear
regression model. On the other hand, although factors affecting growth failure are identified,
it cannot be predicted precisely in that children’s resistance to disease, and genetic, family and
environmental factors have proven to play a crucial role in having growth failure. With the
above remarks in mind, the present study attempts at investigating growth failure in children
under five years of age. Accordingly, to analyze the longitudinal data, multilevel regression
model is used.

2 Data

The data of the present study were collected from children under five years of age who had
referred to health centers in Isfahan. 1500 children were selected using random cluster sampling.
In this connection, five centers were selected according to visit volume of each cluster of samples.
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3 Multilevel regression model

In longitudinal studies, data structure is hierarchical with two levels such that different measures
of participants constitute the first and second level. In this type of data, the assumption
regarding independence of observations is not satisfied; accordingly, appropriate models, in
which correlation between observations is taken into consideration, should be used. Multilevel
regression model, which is also known as hierarchical linear model, is one of the most effective
models for the analysis of longitudinal data and has recently received unprecedented attention
[21-25]. In the multilevel regression model, it is assumed that participants are measured during
different time points (t) for ni times and t = 1, . . . , ni. The response variable yit indicates the
measured value for the ith participant at t time point. This model can be considered as the
following:

yit = (β00 + β01xi + β10zit + β20ti + β11xizit + β21xiti) + (ui0 + ui1zit + ui2ti + ϵit)

where β00, β01, β10, β20, β11 and β21 are the regression coefficients and ui0, ui1 and ui2 refer to
the random effects model. As it can be observed, the above-mentioned mixed method involves
two parts, namely the fixed effects and random effects model [24, 25]. To describe the data,
the multilevel modeling was deployed. As for scrutinizing growth failure, the SAS software was
used.

4 Results and Findings

In the present study, 57.6% of the population (864 participants) were female and 42.4% (636
children) were male. Mothers’ mean age at birth was 26.4 ± 6.3. In addition, 59.2% of moth-
ers (888 mothers) were housewives and 46.8% (702 mothers) of mothers had not high school
diploma. According the findings of chi square test, there is a significant relationship between
mothers’ education level and failure to thrive (p=0.225). Mean (± standard deviation) of chil-
dren’s birth weight was 3107.13±396.12 gram suggesting that 26.13% of them were underweight
(had less than 2500 grams). The results also showed that almost 70% (1050 of them) of children
had growth disorders during some time period until two years old. Growth failure condition of
these children to two years of age is provided in Table 1. Frequency distribution of children for
different diseases is depicted in Table 2 and Figure 1.

Table 1. Frequency distribution of the number of growth failure occurrences.
Number of growth failure occurrences Number Percent

Infant 450 30
One time 629 42
Two times 317 21
Three times 89 6
Four times or more 15 1
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Table 2. Frequency distribution of children with growth failure categorized based on suffering from
different diseases.

Suffering from disease having growth failure not having growth failure

Number (Percent) Number (Percent)
with infection 11(0.7) 6(0.4)
without ifection 1489(99.3) 1494(99.6)
with diarrhea 182(12.1) 29(1.9)
without diarrhea 1318(87.9) 1471(98.1)
suffering from other diseases 93(6.2) 17(1.1)
not suffering from other diseases 1407(93.8) 1483(98.9)

Figure 1: Frequency chart of children with growth failure categorized on suffering from fifferent
diseases.

According to the multilevel regression model results, there is a significant relationship be-
tween growth failure and factors affecting growth failure such as individual differences and
genetic factors (the random effects model), cold factors, nutrition, teething, infection, diarrhea,
stopping breast feeding, and suffering from other related diseases (p¡0.001). However, fever
does not have a significant relationship with failure to thrive. To investigate the unexamined
and random effect of individual factors which are characteristics of each child and the effect
of time on growth failure development, random components of model are scrutinized. Final
results of multilevel regression model along with odds ratio estimates are presented in Table 3.

Table 3. Estimates of the parameters of multilevel model considered in investigating the effect of
different factors on children’s growth failure.

V ariable Estimation Standard Deviation Odds Ratio

diarrhea 0.801 0.110 2.21
teething 0.402 0.017 1.60
nutrition 0.509 0.016 1.75
stopping breast feeding 0.441 0.027 1.56
having cold 0.459 0.013 1.65
infection 0.352 0.042 1.46
other diseases 0.716 0.033 1.86
time random effect 0.011 0.004 -
intercept random effect 0.014 0.009 -
model′s error 0.261 0.001 -

According to this table, variance components (the random effects model) of both the inter-
cept and time are obtained to be significant. The significance of the random part of intercept
indicates that the children under investigation in the present study had different primary value;
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hence, individual differences and genetic factors can be conceived of as effective factors in devel-
oping growth disorders. To put it differently, two child who are identical in terms of nutritional
conditions and suffering from diseases, behave differently regarding being underweight. The
random component of time or the slope of the model, on the other hand, suggests that the
probability of developing growth disorder is different during different time points. According
to odds ratio estimates, compared to other factors, diarrhea, suffering from illnesses, and the
nutrition factor are more effective and have the lion’s share in developing growth disorders.

5 Discussion and Conclusion

The present study made an attempt to shed some light on the relationship between effective
factors leading to growth failure using multilevel regression model. The results demonstrate
that stopping breast feeding, teething, and urinary and respiratory tract infection, are the
most effective factors in developing growth disorders. In most of previously-conducted studies,
it is argued that infectious diseases are the initiating factor in impairing children’s weight gain
[30-32]. In this connection, Rawland and Timothy demonstrated that diarrhea, urinary and
respiratory tract infection, and fever are the most effective factors in increasing the risk of
being underweight. The authors further illustrated that, from among these factors, diarrhea
is the most important factor [31]. However, in the same line of research, Smith and Kolseren
demonstrated that urinary and respiratory tract infection exerts a more adverse effect on being
underweight and developing growth disorders [33,34]. Furthermore, Khodali et. al concluded
that stopping breast feeding and diarrhea are the most crucial factors leading to growth failure.
In the present study, teething is proved to be an effective factor with big odds ratio, however, in
Khodali et. al’s study, this factor is concluded to play a less crucial role [4]. In classifying mal-
nutrition reasons, UNICEF identifies and reports receiving inadequate nutrition and suffering
from diseases as effective factors having rapid and decisive effect on children nutrition condi-
tion. Furthermore, this finding is corroborated by UNICEF reports declaring that, according
to epidemiologic evidences, children’s primary response to nutritional problems and infections
is losing weight [35,36]. However, quite contrary to UNICEF reports, De Villiers showed that
nutritional problems and diseases do not have direct effect on weight loss or growth failure
disorders [37]. The results of Ehsanipour’s study, likewise, confirmed that diarrhea is one the
major and principal reasons leading to weight loss. Furthermore, it was demonstrated that
as mothers become more educated and their educational level increases, children’s weight loss
decreases [38]. In the present study, no statistical relationship was observed between mothers’
level of education and being afflicted with growth disorders; however, in some other studies
conducted in the same line of research, a significant relationship is identified between mothers’
level of education and growth disorders; such that as mothers’ level of education increases,
children’s weight loss decreases [39]. In this connection, Bachner et. al contend that, in de-
veloping countries, organic factors such as suffering from acute or chronic diseases play a more
crucial role in having growth disorders; while, in developed countries such as the united states
of America, nonorganic factors such as environmental and mental factors are more important
in growth failure development [40]. As it was corroborated in the present study, after diarrhea,
stopping breast feeding is the most important factor affecting growth failure. After stopping
breast feeding, children should be provided with complementary foods, thus, if complementary
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foods are inappropriate or are not provided at the right time, they can affect growth failure
decisively. In other related studies, the significant relationship between stopping breast feed-
ing and growth failure is confirmed and attested [22, 42-44]. In the present research, it was
also revealed that urinary and respiratory tract infection have a significant effect of developing
growth disorders. This finding is corroborated by the results of previously-conducted studies
[20,43]. Besides the above-mentioned factors, we can take the effect of individual differences
and genetic factors into account in that the multilevel regression model involves a random
component. Since the results of the random effects model are significant, we can maintain
that, besides all organic and nonorganic factors, individual characteristics of each child plays a
determining role in developing growth failure. Accordingly, in one child, diarrhea might lead to
weight loss and growth failure; while, in another child with different individual characteristics,
it might not lead to losing weight. Taking this issue, which has not received the attention it
deserves, into account and investigating it might have a far-reaching effect on the conclusions
in this field. To put it in a nutshell, according to the findings of the present study, it can be
concluded that suffering from diseases such as diarrhea, infection, and cold, along with nutri-
tional factors such as stopping breast feeding are effective in developing growth disorders. In
addition, increasing mothers’ knowledge regarding childcare can be effective in reducing growth
failure. Furthermore, unidentified factors and some of genetic and environmental factors are ef-
fective in developing growth disorders; accordingly, this leads to the conclusion that, in identical
conditions, children develop different levels of growth disorder.
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Abstract

This paper proposes a maintenance decision-making framework for multi-unit systems
using Machine Learning (ML). Specifically, we propose to use Deep Reinforcement Learn-
ing (RL) for a dynamic maintenance model of a multi-unit parallel system that is subject
to stochastic degradation and random failures. As each unit deteriorates independently
in a three-state homogeneous Markov process, we consider each unit to be in one of three
states: healthy, unhealthy, or a failed state. We model the interaction among system states
based on the Birth/Birth-Death process. By combining individual component states, we
define the overall system state. To minimize costs, we use the Markov Decision Process
(MDP) framework to solve the optimal maintenance policy. We apply the Double Deep
Q Networks (DDQN) algorithm to solve the problem, making the proposed RL solution
more practical and effective in terms of time and cost savings than traditional MDP ap-
proaches. A numerical example is provided which demonstrates how the RL can be used
to find the optimal maintenance policy for the system under study.
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1 Introduction

The main difficulty in today’s manufacturing systems, which are ever more complicated, is
handling unforeseen breakdowns. The use of maintenance scheduling can increase productiv-
ity, improve product quality, and boost customer satisfaction by reducing costly repairs and
replacements, minimizing downtime, and preventing unexpected breakdowns. Proper mainte-
nance scheduling is a crucial component of modern manufacturing practices since it is a strategic
method that maximizes resource use and minimizes production interruptions. There are several
drawbacks to the traditional maintenance scheduling methods. Traditional maintenance plan-
ning may be performed either too regularly, which would result in excessive costs and downtime,
or insufficiently frequently, which would increase the chance of unexpected breakdowns. On the
other hand, modern maintenance methods such as condition-based monitoring can offer more
accurate and cost-effective maintenance strategies [1].

Condition-based maintenance (CBM) is a state-of-the-art maintenance strategy that recom-
mends maintenance action based on the information collected through condition monitoring.
CBM program consists of three main steps: (i) Data acquisition, (ii) Data processing, and (iii)
Decision making [6]. Two important aspects of a CBM program are diagnostics and prognos-
tics. Intuitively speaking, there are two different maintenance methodologies for fault diagnosis
and prognosis, namely (i) Process-Driven Models, and (ii) Data-Driven Models. Process-driven
models rely on the statistical information which is extracted from the process. In other words,
these processes can be explained by a series of mathematical (set of algebraic or differential
equations) or physical equations. On the other hand, data-driven models use machine learn-
ing approaches to establish correlations between input and output data [4]. Researchers have
been using statistical models for decades as a promising solution methodology for maintenance
management.

Several research has investigated model-based maintenance in many sectors. Model-based
maintenance has been used in the energy sector to monitor wind turbines and predict compo-
nent breakdowns. It is used to forecast gearbox failures in wind turbines, which lowers mainte-
nance costs and downtime, according to the research in [5]. There are various restrictions with
model-based maintenance, one of which is that it requires accurate models of the system under
observation. It may be time-consuming and costly to develop these models. Moreover, systems
with unpredictable behavior or operating conditions that change quickly may not perform well
with model-based maintenance. Since, statistical models may not be able to accurately predict
future failures or maintenance needs, particularly in complex systems with many interacting
components, the main focus of researchers is on creating cutting-edge Machine Learning (ML)
and Artificial Intelligence (AI)-based solutions for maintenance management problems.

For instance, [2] studied a serial production line with intermediate buffers. If just one
machine failed, the whole line will be stopped, so finding the optimal preventive maintenance
policy is so crucial. A double deep Q-network algorithm is used to learn the PM policy.
[8] proposed a deep RL-based CBM to overcome high-dimensional problems as well as low-
dimensional ones. Both stochastic and economic dependencies are taken into consideration.
They mapped the system degradation directly to the maintenance decision without the necessity
of having a maintenance threshold. [3] proposed a novel RL approach that can handle various
maintenance strategies without any prior knowledge while taking spare component storage
costs into account. It’s noteworthy that they created sufficient training data for an RL-driven
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strategy by simulating various maintenance scenarios. Using a deep reinforcement learning
methodology, [7] introduced a new dynamic maintenance model for a deteriorating repairable
system exposed to deterioration. Instead of discretizing the state space, they take into account
the precise degree of system deterioration to represent their issue.

In this paper, we propose an RL-based model for CBM for a multi-unit parallel system to
find the optimal policy for maintenance actions. Unlike the previous research in this context
which focus on the degradation level of the system, the number of failed and unhealthy units
is taken into consideration. The remaining sections of the paper are organized as follows: In
Section 2, we first describe a general view of the problem and then we go through the details
during this section. In section 3 we discuss the details of the numerical experiment.

2 problem formulation

2.1 System Description

Consider a production system consisting of M identical, parallel units. Deterioration of each
unit occurs independently according to a three-state homogenous Markov process such that
each unit has three states: healthy, unhealthy, and failure denoted as states 0, 1, and 2, re-
spectively. Healthy and unhealthy states are operational states and the failure state is not
operational. Each unit of the system monitors continuously so that updated information about
the deterioration of each unit is available. At the start of the planning horizon, all units are
in a healthy state and gradually deteriorate. The system state is defined using two interacting
populations: (i) The number of units in the unhealthy state, and (ii) The number of units in
the failure state. More specifically, at a specific time as t, the state of the system is defined
as st = (i, j). So that i is the number of units in the failure state, and j is the number of
units in the unhealthy state and 0 ≤ i + j ≤ M, i, j ≥ 0. It means that the number of units
in the healthy state is M − i − j. Accordingly, the total number of system states is equal
to (M + 2)(M + 1)/2. The Birth/Birth-Death stochastic process is employed to describe the
interaction among the system states, for more details see [1].

2.2 Markov Decision Process

Generally speaking, ML models can be classified into three major categories: (i) Supervised
learning, (ii) Unsupervised learning, and (iii) Reinforcement learning. In an RL model, an agent
interacts with its environment to discover the best action to take in a given state from a set of
possible states. After getting an action, the agent will get feedback from the environment. The
feedback can be good (reward) or bad (penalty). This whole process is known as the Markov
Decision Process (MDP), which includes a set of actions A, a set of states S, a transition matrix
P , and a reward function, denoted by R. Agent and environment are two main components of
RL. At every time step t, the agent is in state st ∈ S and will take an action at ∈ A. Then,
based on transition probabilities it will go to state st+1 ∈ S with a reward of rt = R(st, at).
This process continues until the agent reaches the terminal state. Ultimate goal of an MDP is
determining the optimal policy in order to maximize (minimize) the expected returns (costs)
while the stages can be finite or infinite. Hence, policy is a fundamental concept in MDP and
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consequently in RL and DRL. Given a specific state of MDP, a policy prescribes which action
should be selected among the eligible actions of that state. A policy fully describes the behavior
of the agent in MDP. Given that the system is in state s, under the policy π, the probability
of taking action a is P (At = a|St = s). Hence, a policy is a map from the states of the system
to the action set: π : S → A.

The optimal policy denoted as π∗ is the one that results in the maximum accumulation of
rewards through interactions. In other words, the main goal of RL agent is reward maximiza-
tion. The output of every RL problem is the optimal policy, denoted by π∗, which leads to
achieving the maximum accumulated rewards during interactions, expressed as:

π∗ = argmax
π

Eπ

{H−1∑
t=0

γtrt+1|s0 = s
}
,

where γ ∈ [0, 1] and H represent the discount factor and the number of finite episodes in MDP.
While the low value of γ maximizes the short-term rewards, a higher one leads to increasing
the long-term rewards.

2.3 Deep Reinforcement Learning

Action-value function is the expected return given that the system is in state s, action a is
taken, and hereafter policy π is employed. It is denoted by Qπ(s, a). In DRL, action-value
function can be parametrized in order to approximate/estimate the true value of action-value
function. Given the parameter θ, the action-value function under policy π is approximated as
follows:

Q(s, a, θ) ≈ Qπ(s, a).

Hence, Q(s, a, θ) is approximated action-value function parametrized with trainable parameter
θ. There exists different function approximators such as linear combination of features, neural
networks, and decision trees. Deep Q networks (DQN) is a prevalent method to train parameter
θ and consequently finds a suitable approximation for true action value function. As its name
indicates, it employs deep neural networks to find optimal values for θ. It is stated by some
researchers that standard DQN algorithms suffer from overestimation for action-value function.
Hence, to address the problems of standard DQNs, DDQN is proposed.

Parameters of online network and target network are denoted as θ and θ′, respectively.
Target network is used for policy evaluation, while online network is used for selecting actions
given the current state. The parameter of online network is updated in each training step,
but θ′ of the target network is frozen and only after specified number of iterations, parameter
of online network is copied into the target network. The goal of this point is stabilizing the
learning process. It is used batch training to train the neural network. Previous transition
steps are recorded in a reply memory. A minibatch of transitions from the reply memory is
randomly selected to train the online network. Training of the online network means that an
optimization algorithm is conducted to minimize the squared loss, i.e., [Qtarget − Q(s, a, θ)]2,
with respect to parameter θ . In each training step, according to the gradient descent method,
the parameter is updated using the following equation:

θ ← θ + α[Q(s, a; θ)−Qtarget]∇θQ(s, a; θ),

where α is learning rate.
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2.4 Deep Reinforcement Learning for Maintenance Policy

We provide a DDQN approach for the CBM policy optimization of the system described in the
previous section. Let define each component of RL in detail:

• Agent: The management system, as the intelligent component of the system, acts as the
agent and interacts with the environment based on a set of maintenance decisions.

• State-space: In the proposed problem, a component could be in three different states:
(i) Healthy state, (ii) Unhealthy state, and (iii) Failed state. Therefore, the state of the
system is in the form of (N2, N1) which N2 represents the number of failed units and N1

represents the number of unhealthy units.

• Action-space: At each decision epoch, four actions are available. a0: do nothing, a1:
conducting reactive maintenance (RM) on the failed units, a2: conducting preventive
maintenance (PM) on the unhealthy units, and a3: conducting PM on the unhealthy
units and RM on the failure units.

• Reward: Consider the following cost components in the model:

– C0, C1: Operating cost rates of each unit in states 0 and 1, respectively.

– CF : Failure replacement cost of each unit.

– CP : Preventive maintenance cost of each unit.

– CD: Cost rate of lost production for unsatisfied demands. There is lost production
if the total production rate of the system PR = N0 × p0 +N1 × p1 drops below the
demand rate (D) at time t.

– CE: Profit rate obtained from excess production.

– CK : Fixed set-up cost including the cost of sending maintenance crew to perform
maintenance.

The reward function in the proposed model is a function of the cost components given
by:

Reward = R1 +R2,

where

R1 = (CK + CF ×N2)×B1 − (CK + CP ×N1)×B2

−(CK + CF ×N2 + CP ×N1)×B3,

in which B1, B2, and B3 are indicator variables, and

R2 = −(M −N
′

1 −N
′

2)× C0 −N
′

1 × C1

−CD ×max(0, D − ((M −N
′

1 −N
′

2)× p0 +N
′

1 × p1))

+CE ×max(0, ((M −N
′

1 −N
′

2)× p0 +N
′

1 × p1)−D),

where N
′
2 is equal to zero if a1 is selected, N

′
1 is equal to zero if a2 is selected, and N

′
1 and

N
′
2 are equal to zero if a3 is selected.
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3 Numerical Study

Consider a system with M=30 units. The agent will start from state (0, 0) and choose an action.
Every single action changes the state of the system. The agent moves among states based on
the Birth/Birth-Death process. The input parameters in Table 1 are considered in our model.
Assuming γ = 0.5, α = 0.01, the initial value for ε = 0.9 and using 64 neurons in the hidden
layers of the networks in 2000 thousand episodes, the results of the DDQN implementation are
shown in Figure 1, which indicates the convergence of the algorithm.

Table 2 shows some examples of agent performance in different states. For example, in States
(1, 2) and (2, 3) when the number of healthy units is more, the agent has decided to choose
action a0, and in States (6, 9) and (9, 3), when the number of healthy units has decreased, the
agent has decided to choose action a3 which seems that it is cost-effective, in addition to the
corrective repair of failed units, preventively replace unhealthy units because of high setup cost.

Table 1. The Value of Cost Components.
Parameter D p0 p1 C0 C1 CD CE CK CF CP M

Value 9000 450 230 5 10 0.8 0.04 500 5 1 30

Table 2. The Value of Cost Components.
States (1, 1) (2, 1) (1, 5) (3, 7) (2, 5) (6, 9) (7, 8) (9, 3) (9, 4) (8, 5) (7, 7)

Action a0 a0 a0 a0 a0 a3 a3 a3 a3 a3 a3

4 Conclusion

In conclusion, we proposed a deep RL-based framework for maintenance decision making with
the goal of cost minimization. We considered a large parallel multi-unit system. Units are
subject to random failures and are independent from each other. Each unit could be in three
different states, namely, healthy, unhealthy and failed. Since, the number of units is very
large which leads to a large state-space, we used a DDQN algorithm to obtain the optimal
maintenance policy for the system. At the end, we provided a numerical example to evaluate
the effectiveness of the proposed model compared to the traditional methods.
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Abstract

In this article, based on progressively type-II censored order statistics, we create bal-
anced confidence regions (BCR) and optimal confidence regions (OCR) for the parameters
of an inverted exponentiated Pareto (IEP) distribution. Constraint optimization problem
and nonlinear programmings methods are used in order to construct OCRs. Monte Carlo
simulation studies are used to evaluate the performance of the methods proposed in this
paper. Finally, a numerical example is presented to illustrate the proposed regions.

Keywords: Confidence region, Inverted exponentiated Pareto distribution, Progres-
sively Type-II censored, Optimization, Monte Carlo.

1 Introduction

The two-parameter exponentiated Pareto distribution is a lifetime distribution and is widely
used in many fields. This distribution is widely used in reliability and life-testing studies. In
many life-testing and reliability studies, lifetime experiments are usually terminated prior to
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the failure of all experimental units in the sample. Under conventional censoring schemes, the
experimenter can not remove (or censored) units from a life-testing at various stages during the
experiments. Progressive Type-II censoring scheme is a more general censoring scheme in which
surviving units can be removed from the study at any time of failures (see, e.g., Balakrishnan
and Aggarwala [2], Balakrishnan and Cramer [3]).

Suppose that lifetimeX of items follow an IEP distribution with cumulative density function
(CDF) given as

F (x;α, λ) = 1−

[
1−

(
x

1 + x

)λ]α
, x, λ, α > 0, (1)

and the probability density function (PDF) is given by

f(x;α, λ) = αλ
xλ−1

(1 + x)λ+1

[
1−

(
x

1 + x

)λ]α−1

, x, α, λ > 0, (2)

where λ and α are both shape parameters.

In the issue of confidence intervals, Dey and Dey [4] provided the approximate confidence
interval of the generalized inverted exponential (GIE) distribution based on a progressively
censored sample. We know that when the sample size is small, the importance of calculating
the exact confidence intervals is more understandable. Recently, Kinaci et al. [6] introduced the
exact confidence intervals and regions for GIE parameters and studied based on progressively
type-II censored sample and recorded values. Also, Wang et al. [8] obtained the confidence set
for the GIE parameters based on k-record values.

Confidence regions can be used to find confidence bands for a bivariate function of the scale
and shape parameters in IEP distribution, such as the reliability and cumulative distribution
functions. Further, these regions are useful for testing hypotheses related to the parameters of
a general class of inverse exponentiated distributions.

The rest of the paper is organized as follows: In Section 2 and 3, based on the progressive
type-II censoring, we obtain balanced and optimal confidence regions for the parameters of IEP
distribution. In Section 4, a simulation study is performed to compare the areas of optimal
and balanced confidence regions and it is shown that the reduction in areas of the optimal joint
confidence regions with respect to the balanced confidence regions is substantial. a numerical
example is given in Section 5 for illustrative and comparative purposes. Finally, some concluding
remarks are presented in Section 6.

2 The balanced confidence region

Let X1:m:n < X2:m:n < · · · < Xm:n:n denote a progressively Type-II censored sample from IEP
distribution with a pdf in Equation (2) with censoring scheme (R1, . . . , Rm).

Let

Yi:m:n = −α log

[
1−

(
Xi:m:n

1 +Xi:m:n

)λ]
, i = 1, 2, . . . ,m.
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For notation simplicity, we will write Xi for Xi:m:n. It can be seen that Y1:m:n < Y2:m:n < · · · <
Ym:m:n are progressively type-II right censored order statistics from a standard exponential
distribution. For notation simplicity, we will write Yi for Yi:m:n. Let

ηi = ni(Yi − Yi−1), i = 2, . . . ,m

where ni = n−
∑i−1

s=1(1+Rs), i = 2, . . . ,m and η1 = nY1. It is well known that, from Thomas and
Wilson [9], η1, η2, . . . , ηm are independent and identically distributed as a standard exponential
distribution.

For j = 1, 2, . . . ,m− 1, define

U(j)(λ) =

∑j
i=1 ηi∑m
i=1 ηi

=

∑j
i=1(1 +Ri) log

(
1−

(
Xi

1+Xi

)λ)
+ nj+1 log

(
1−

(
Xi

1+Xj

)λ)
∑m

i=1(1 +Ri) log

(
1−

(
Xi

1+Xi

)λ) . (3)

It can easily be shown that function U(j) is strictly descending from λ. Moreover, limλ→0 U(j)(λ) =
∞ and limλ→∞ U(j)(λ) = 0. Thus, if u > 0, U(j)(λ) = u has a unique solution for any λ > 0.
Hence U−1

(j) (.) are strictly decreasing. It is observed that U(1), U(2), . . . , U(m−1) are order statistics

from the uniform (0,1) distribution with sample size m− 1.
To obtain a balanced joint confidence region under a progressive Type II censoring scheme

for the parameters α and λ, define

T (λ) = −2
m−1∑
j=1

log
(
U(j)

)
,

Furthermore,

T (λ) = −2
m−1∑
j=1

log


∑j

i=1(1 +Ri) log

(
1−

(
Xi

1+Xi

)λ)
+ nj+1 log

(
1−

(
Xi

1+Xj

)λ)
∑m

i=1(1 +Ri) log

(
1−

(
Xi

1+Xi

)λ)
 ,

(4)

According to Viveros and Balakrishnan (1994) [7], T has a chi-square distribution with 2(m−1)
degrees of freedom. Based on above results, T (λ) increases in λ.

The second pivotal quantity Z can be defined as

Z(α, λ) = 2
m∑
i=1

ηi = αW (λ),

where

W (λ) = −2
m∑
i=1

(Ri + 1) log

(
1−

(
Xi

1 +Xi

)λ)
. (5)

Z has a chi-square distribution with 2m degrees of freedom. Moreover, U(j) and Z are stochas-
tically independent. Also, T and Z arestochastically independent.

In order to obtain the BCR for the parameters of IEP distribution, a useful theorem is given
first as follows.
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Theorem 2.1. Suppose that X1 < X2 < · · · < Xm is a progressively Type-II censored sample
from IEP distributions with a pdf in Equation (2) with censoring scheme (R1, . . . , Rm). Based
on the pivotal quantities T and Z, a 100(1− γ)% joint confidence region for (α, λ) is given by

C BCR
1−γ =

{
(α, λ) :

χ2
2m,p1

W (λ)
< α <

χ2
2m,p2

W (λ)
, T−1(χ2

2(m−2),p1
) < λ < T−1(χ2

2(m−2),p2
)

}
,

(6)

where p1 = (1 −
√
1− γ)/2 and p2 = (1 +

√
1− γ)/2 and for 0 < p < 1, χ2

ν,p denotes the pth

quantile of χ2
ν. Also, T

−1(t) is the solution of λ for the equation T (λ) = t.

The area of CBCR
1−γ is given by

|CBCR
1−γ | = (χ2

2m,p2
− χ2

2m,p1
)

∫ T−1(χ2
2(m−2),p2

)

T−1(χ2
2(m−2),p1

)

dλ

W (λ)
. (7)

3 The optimization problem

In this section, an optimal confidence region for (α, λ) based on the pivotal quantities (T, Z) is
constructed. We used constrained optimization problems to construct the optimal confidence
regions. The following theorem presents the optimal confidence region for (α, λ) based on the
pivotal quantities (T, Z).

Theorem 3.1. Let X1 < X2 < · · · < Xm denote a progressively Type-II censored sample from
IEP distribution with censoring scheme (R1, . . . , Rm). Based on the pivotal quantities T and
Z, an optimal 100(1− γ)% joint confidence region for (α, λ) is given by

COCR1−γ =

{
(α, λ) :

b∗1
W (λ)

< α <
b∗2

W (λ)
, T−1(a∗1) < λ < T−1(a∗2)

}
, (8)

where a∗1, a
∗
2, b

∗
1 and b∗2 are computed as the solution of the optimization problem

Minimize

∫ T−1(a2)

T−1(a1)

b2 − b1
W (λ)

dλ

Subject to
(
Ψ2(m−1)(a2)−Ψ2(m−1)(a1)

)(
Ψ2m(b2)−Ψ2m(b1)

)
= 1− γ,

0 < a1 < a2, 0 < b1 < b2,

where Ψν is the cdf of χ2(ν) distribution with ν degree of freedom and T−1(t) is the solution of
λ for the equation T (λ) = t.

Proof. Assuming that

P (a1 < T (λ) < a2, b1 < Z(α, λ) < b2) = 1− γ,

or, equivalently, (
Ψ2(m−1)(a2)−Ψ2(m−1)(a1)

)(
Ψ2m(b2)−Ψ2m(b1)

)
= 1− γ,
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the 100(1− γ)% joint confidence region for (α, λ) is

C1−γ =
{
(α, λ) : Z−1 (b1, λ) < α < Z−1 (b2, λ) , T

−1 (a1) < λ < T−1 (a2)
}

=

{
(α, λ) :

b1
W (λ)

< α <
b2

W (λ)
, T−1(a1) < λ < T−1(a2)

}
,

where T−1(t) is the solution of λ for the equation T (λ) = t and Z−1(z, λ) is the solution of α
for the equation Z(α, λ) = z. The area of C1−γ is given by

|C1−γ| =

∫ T−1(a2)

T−1(a1)

∫ Z−1(b2,λ)

Z−1(b1,λ)

dαdλ = (b2 − b1)

∫ T−1(a2)

T−1(a1)

dλ

W (λ)
. (9)

Thus, the optimal 100(1 − γ)% confidence region for (α, λ) based on the pivotal quantities
(T, Z) is obtained by minimizing the area |C1−γ| with respect to a1, a2, b1 and b2 subject to the
constraint (

Ψ2(m−1)(a2)−Ψ2(m−1)(a1)
)(

Ψ2m(b2)−Ψ2m(b1)
)
= 1− γ,

for 0 < a1 < a2, 0 < b1 < b2. This completes the proof.

Then the area of COBC
1−γ is given by

|COBC
1−γ | = (b∗2 − b∗1)

∫ T−1(a∗2)

T−1(a∗1)

dλ

W (λ)
. (10)

4 Simulation study

In this section, a Monte Carlo simulation is carried out in order to investigate the performance
of the proposed BCR and OCR. In this simulation, we computed the BCRs and OCRs for (α, λ)
as discussed in Sections 2 and 3. We selected the default values of the parameters and the size
of the observations so that we can measure the behavior of the average area corresponding
to the various confidence regions proposed with respect to increasing the parameter values or
increasing the censoring levels 100(1−m/n)%. We have designed four schemes for simulation
with n and m as: Scheme I: R = (0, . . . , 0︸ ︷︷ ︸

m−1

, n −m), Scheme II: R = (n −m, 0, . . . , 0︸ ︷︷ ︸
m−1

), Scheme

III: R = (n−m
2

, 0, . . . , 0︸ ︷︷ ︸
m−2

, n−m
2

), Scheme IV: R = (0, . . . , 0︸ ︷︷ ︸
m/2−1

, n−m, 0, . . . , 0︸ ︷︷ ︸
m/2

).

The reduction in size of the A set with respect to the corresponding B region is defined as
100(1− |A|/|B|)%. The results for these simulations are summarized in the Tables 1 and 2.
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Table 1. The average confidence area (ACA), coverage percentage (CP) and average reduction (AR)
of the CBCR0.95 and COCR0.95 confidence regions of (α, λ).

ACA CP
λ α n m Scheme BCR OCR AR BCR OCR
2 3 20 16 I 17.8557 14.5376 %14 0.951 0.952

II 12.3410 10.9135 %10 0.949 0.948
III 16.1773 13.7778 %13 0.948 0.947
IV 13.4880 11.7344 %11 0.950 0.949

18 I 11.0275 9.6934 %11 0.951 0.948
II 9.2741 8.3548 %9 0.947 0.952
III 12.2495 10.8086 %10 0.948 0.947
IV 11.3048 10.0242 %10 0.947 0.951

24 18 I 16.2205 13.5204 %13 0.948 0.947
II 11.8898 10.6242 %9 0.951 0.950
III 11.9122 10.3986 %11 0.947 0.947
IV 9.4506 8.4904 %10 0.951 0.952

20 I 10.6589 9.3584 %11 0.948 0.951
II 9.9473 8.9581 %8 0.952 0.950
III 9.6732 8.6608 %10 0.948 0.947
IV 9.2351 8.3264 %9 0.951 0.952

5 20 16 I 30.9496 24.4323 %17 0.947 0.951
II 29.1180 24.2763 %13 0.950 0.952
III 25.7408 21.2743 %15 0.949 0.951
IV 23.0614 19.4474 %13 0.948 0.947

18 I 24.8779 20.3632 %13 0.949 0.947
II 22.8897 19.3833 %12 0.950 0.952
III 19.0571 16.3070 %12 0.948 0.948
IV 23.9572 20.1493 %12 0.949 0.946

24 18 I 28.0465 22.1242 %16 0.951 0.949
II 19.3313 16.8727 %11 0.952 0.951
III 33.2771 26.1985 %14 0.948 0.952
IV 19.6688 16.9584 %12 0.949 0.951

20 I 18.3311 15.5316 %13 0.950 0.951
II 18.1261 15.9342 %11 0.952 0.947
III 18.2151 15.7105 %12 0.948 0.950
IV 12.7028 11.3168 %10 0.949 0.948
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Table 2. The average confidence area (ACA), coverage percentage (CP) and average reduction (AR)
of the CBCR0.95 and COCR0.95 confidence regions of (α, λ).

ACA CP
λ α n m Scheme BCR OCR AR BCR OCR
4 3 20 16 I 43.1320 34.5983 %14 0.951 0.949

II 25.7450 22.8862 %10 0.947 0.948
III 30.4935 25.9927 %12 0.951 0.947
IV 27.8593 24.3287 % 11 0.952 0.951

18 I 30.1782 25.6210 %11 0.949 0.952
II 31.0517 26.4580 %10 0.951 0.946
III 24.5839 21.5966 %10 0.945 0.946
IV 19.1328 17.1632 %9 0.951 0.948

24 18 I 33.8629 28.0568 %13 0.949 0.946
II 24.1492 21.6610 %9 0.948 0.947
III 22.3439 19.4794 %11 0.950 0.953
IV 19.4357 17.3446 %10 0.948 0.954

20 I 20.4957 18.0679 %11 0.952 0.951
II 16.6702 15.2384 %8 0.951 0.953
III 20.8256 18.5031 %10 0.952 0.951
IV 19.6430 17.6773 %9 0.947 0.950

4 5 20 16 I 50.6404 40.8817 %16 0.952 0.951
II 45.5263 38.9142 %13 0.948 0.947
III 52.5354 43.3546 %15 0.951 0.948
IV 43.0075 36.4701 %13 0.947 0.947

18 I 47.6630 38.8726 %13 0.945 0.950
II 37.4110 32.3423 %11 0.950 0.951
III 46.7562 39.6677 %13 0.948 0.947
IV 31.5138 27.6902 %11 0.948 0.949

24 18 I 46.4914 37.3444 %15 0.951 0.950
II 43.0423 37.2684 %11 0.947 0.952
III 52.4100 43.0182 %14 0.948 0.947
IV 31.5166 27.5685 %11 0.947 0.949

20 I 58.5238 45.9006 %13 0.948 0.947
II 36.7140 32.1504 %10 0.947 0.953
III 40.0328 34.1497 %12 0.949 0.951
IV 33.5528 29.3308 %10 0.948 0.946

Based on the progressive type-II censoring, the simulation results in Tables 1 and 2, show that
the coverage probabilities of the joint confidence regions for (λ, α) are close to the desired level of
1 − γ. Also, we observe that with increasing number of observations, the average area of related
confidence regions decreases. The average area of the confidence regions can be considered as an
increased function relative to the censoring levels. Of course, increasing the parameter values also
leads to an average area increase in the corresponding confidence regions. We also observe that the
area reduction of the optimal confidence regions for the corresponding balanced regions increases as
m decreases or the level of censorship increases. A comparison of the average area of the confidence
regions indicates that in all cases considered, when the degree of censoring increases, the optimal
confidence region increases significantly compared to the balanced confidence region.

5 Application to real data

In this section, we discuss the confidence region proposed in this paper using a real data example.

Example 5.1. In this section, with the help of a set of real data from Zhu (2010)[10] in the context of
the lifetime of 21 lamps from a constant-stress test , we will obtain the balance and optimal areas for
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the IEP parameters. These data (By dividing its limitation observation 130.47 ) are: 0.0267, 0.0371,
0.0661, 0.0683, 0.0715, 0.1469, 0.1505, 0.1564, 0.2084, 0.2164, 0.3115, 0.3216, 0.3770, 0.3948, 0.4273,
0.5487, 0.5752, 0.7065, 0.7843, 0.7898 and 0.9225. Based on the above observations, the MLEs of α
and λ are estimated as α̂ = 6.7873 and λ̂ = 1.4747, and the Kolmogorov-Smirnov distance is 0.11933
with an associated p-value of 0.8918, which indicates that the IEP distribution can fit these data
match correctly. Based on the initial lifetime of the bulb data, a group of progressively censored Type
II samples with n = 21, m = 16, R1 = 5, and Ri = 0, i = 2, ..., 16 is produced as follows. 0.0267,
0.0371, 0.0661, 0.0715, 0.1469, 0.1564, 0.2164, 0.3115, 0.3216, 0.3770, 0.3948, 0.4273, 0.5487, 0.7065,
0.7843 and 0.9225.

By Theorem 2.1 and Theorem 3.1, the 95% joint confidence region for α and λ is determined by
the following inequalities:

CBCR0.95 =

{
16.8213
W (λ) < α < 52.4847

W (λ)

0.7327 < λ < 2.2066
and COCR0.95 =

{
15.2321
W (λ) < α < 52.1584

W (λ)

0.5540 < λ < 2.0587
.

The area of CBCR0.95 is 12.3805, while the area of COCR0.95 is 10.6843. The reduction in the size of COCR0.95

concerning the corresponding CBCR0.95 is 13.70%, and the confidence regions COCR0.95 and CBCR0.95 are plotted
in Figure 1. As can be seen, the area of COCR0.95 is significantly reduced compared to CBCR0.95 confidence
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Figure 1: BCR and OCR (pink),CBCR
0.95 and COCR

0.95 , in Example 5.1.

region.

6 Concluding remarks

In this paper, we presented a classe of balanced and optimal confidence regions for parameters λ
and α of IEP distribution based on progressive type-II censoring scheme. A constrained optimization
problem was proposed in order to determine the optimal confidence regions for (λ, α). It is observed
that the reduction in area of the optimal joint confidence region with respect to the balanced confidence
regions is substantial.
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The OCR presented in this paper can be used in hypothesis testing and estimation related to
unknown parameters. For example, the p-value associated to the test of the null hypothesis H0 :
(α, λ) = (α0, λ0) versus the alternative hypothesis H1 : (α, λ) ̸= (α0, λ0) based on the smallest
100(1− γ)% confidence region COCR for (α, λ) would be defined by

p = max{γ ∈ (0, 1) : (α0, λ0) ∈ COCR},

see, e.g., Fernandez [5] and Asgharzadeh et al. [1].
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On the reliability of phased mission systems with

non-identical components subject to external shocks
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Abstract

A phased mission system (PMS) accomplishes its mission if it completes different tasks
successively. In fact, the PMS includes multiple consecutive, non-overlapping phases. In
this paper, some representations based on the concept of survival signature are given for
the reliability function of a PMS with non-identical components in three scenarios: (a) the
component failures occur only based on their aging, (b) the component failures are only
subject to external shocks and (c) the components failures are subject to both of aging,
and external shocks. Finally, a numerical example is presented to explain the theoretical
results.

Keywords: External shock, Phased mission system, Reliability, Survival signature.

1 Introduction

Phased mission systems (PMSs) have to perform a series of tasks in sequence to complete the deter-
mined mission. The operational life of such systems consists of a sequence of non-overlapping periods,
called phases. The failure of the PMS in any phase causes mission failure. The PMSs appear in differ-
ent areas of real-world applications, such as aerospace, communication networks, etc. An For example,
the flight of an aircraft is a PMS with the phases of takeoff, cruise, and landing. Another example is

1bidarmaghz71@gmail.com
2s.zarezadeh@shirazu.ac.ir
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a manufacturing system that performs a sequence of tasks by transferring a completed batch of parts
from machine to machine [7]. The components of PMS may not have role in all phases and may be
under the different pressure in different phases [15]. Therefore, we must consider both properties of
changing the system structure and dependency between the phases to evaluate the PMSs reliability
function. This made more complicate the study of PMSs reliability relative to other systems.

Numerous efforts have been made to evaluate the reliability of PMS since 1970s. Generally, all
approaches can be classified into state space-oriented approaches and combinatorial models. There
are also some models which combine two methods to have the advantages of both; see, e.g., [8],
[9]. The state space-oriented methods usually use the continuous-time Markov chain, semi-Markov
process, or Petri nets for estimation of the reliability of PMSs [13, 2, 3]. The state space-oriented
methods provide flexible and powerful options for modeling complex dependencies among system
components. However, the cardinality of the state space can become exponentially large as the number
of components increases. The combinatorial methods use Boolean algebra, Binary Decision Diagram
(BDD), multivalued decision diagram (MDD), or other decision diagrams to reduce the complexity of
state space-oriented methods; see, e.g. [17, 6, 12]. Huand et. al. provided the exact closed form for
reliability function of PMSs with binary components based on the new survival signature, [4]. The
mechanism for computing survival signature is free of components’ lifetimes. The reliability of PMSs
with multi-type and multi-state components was evaluated under aging by using a new version of the
survival signature, [1].

There are many situations in which the components may fail due to both factors of aging and
external shocks. For example, highway bridges may collapse due to the failure of their components
(aging) or may be subject to external shocks (such as earthquakes). So, we get incorrect results
when the reliability is evaluated without considering the effects of external shocks. [5] investigated
the reliability of PMSs under the assumption that the shocks cause a random amount of damage to
the components. The reliability of coherent systems subject to aging and external shocks where each
occurring shock destroys, with equal probabilities, one of the components functioning at the time of its
occurrence evaluated by [11]. There are a few studies on the reliability of a PMS subject to aging and
external shocks. The reliability of PMS subject to internal and external failures based on the BDD
method is evaluated by [16]. See [10] and [14] for other research on the reliability of a PMS subject
to aging and external shocks. In this paper, we evaluate the reliability of the PMS with non-identical
components subject to aging and external shocks based on the concept of survival signature, and some
compact representations are presented for the reliability function of a PMS. The proofs of theorems
are omitted because of restrictions in page numbers.

2 Main results

For getting the results, the concept of meta-type components is used [4].

Definition 2.1. Components are defined to be of the same meta-type when they are of the same
physical type and appear in the same phases.

Suppose that our PMS includesM phases with K different meta-type of n independent components
where these components can be in two states: up state and down state. If we have mk components
of meta-type k, then n =

∑K
k=1mk, k = 1, 2, . . . ,K. Let phase i begin to operate at time τi and it

ends at time τi+1 where i = 1, . . . ,M , τ1 = 0 and τM+1 is the full mission time. Note that at least
one meta-type of components should be present in each phase. Suppose that the random failure times
of components are statistically independent in the same phases and even that the components of the
same meta-type can be exchangeable. Also, suppose that the components are non-repairable for the
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full duration time of the mission. Assume that Xij denotes the state of component j, j = 1, 2, ..., n,
in phase i, i = 1, 2, ...,M where

Xij =

{
1 if component j functions for all of phase i

0 if component j fails before the end of phase i,

and Xi = (Xi1, ..., Xin) shows the state vector of components in phase i and X(m) =
(
X1, . . . ,Xm

)
,

m = 1, ...,M, gives the state vector of components for the first m phases. The state of PMS is also as-
sumed to be binary and φ(m) denotes the state of PMS for the firstm phases. Then, φ(m)(X(m)) = 1(0)
means that the PMS works (fails) for the firstm phases and the state vectorX(m). Let Φm(ℓ1, ℓ2, ..., ℓm)
be the probability that the PMS works for the first m phases provided that ℓi components function
in phase i ∈ {1, 2, ...,m}.

Under these assumptions, the survival signature of PMS for the first m phases is defined as follows
[4]

Φm(ℓ1,1, ..., ℓm,K) =

[
m∏
i=1

K∏
k=1

(
ni,k
ℓi,k

)]−1 ∑
X(m)∈S(m)

φ(m)(X(m)), (1)

where Φm(ℓ1,1, ..., ℓm,K) denotes the probability that the PMS functions for the first m phases, m =
1, 2, ...,M , given that ℓi,k components of meta-type k work in phase i, i = 1, 2, ...,m, k = 1, 2, ...,K.
Also, S(m) denotes the set of all possible state vectors of components state for the first m phases given
that ℓi,k components of meta-type k function in phase i. Note that ni,k = li0,k where i0 is the nearest
phase before phase i where the components of meta-type k are present in that phase. If the PMS
functions in an environment without shocks and only the aging only causes failure of the components,
then the reliability function of PMSs is obtained as follows

H̄a(t) =

n1,1∑
ℓ1,1=0

...

nγ(t),K∑
ℓγ(t),K=0

Φγ(t)(ℓ1,1, ..., ℓγ(t),K)Pr

[
γ(t)∩
i=1

K∩
k=1

(
N [i,k]
a (t⋆i,k) = ni,k − ℓi,k

)]

=

n1,1∑
ℓ1,1=0

...

nγ(t),K∑
ℓγ(t),K=0

Φγ(t)(ℓ1,1, ..., ℓγ(t),K)

γ(t)∏
i=1

K∏
k=1

(
ni,k
ℓi,k

)
(Ri,k(t

⋆
i,k))

ℓi,k

×(1−Ri,k(t⋆i,k))ni,k−ℓi,k , (2)

where t⋆i,k = min{t, τi+1} − τi + βi,k and βi,k =
∑

i′∈Ik(τi′+1 − τi′) with Ik as the set of numbers of
phases that the components of meta-type k are present in those phases before phase i; see, [4, 1]. Also
γ(t) denotes the function which shows the phase that the system is in that phase at time t.

Note that N
[i,k]
a (t) denotes number of the failed components of meta-type k due to aging in phase

i, i = 1, 2, ...,M , k = 1, 2, ...,K and t ∈ [τi, τi+1]. If the reliability function is being evaluated at

t > τi+1, then N
[i,k]
a (t) = N

[i,k]
a (τi+1). Also Ri,k(t) = 1− Fi,k(t), i = 1, 2, ..., γ(t), and

Fi,k(t) =
Fk(t

∗
i,k)− Fk(βi,k)

1− Fk(βi,k)

where Fk(.) is DF of the lifetimes of components of meta-type k, k = 1, 2, ...,K. Note that if all
components of a special meta-type fail in a given phase, the PMS may function with the other type of
components. Then, ℓi,k ≥ 0, for i = 1, 2, ..., γ(t), k = 1, 2, ...,K. In what follows, we first evaluate the
reliability of the PMS only under external shocks. Finally, an expression is given for the case where
both the aging and external shocks may cause of components failure.
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2.1 PMS with components only under external shocks

Now, we assume that the components of PMS are absolutely reliable under their aging and only the
harmful shocks arriving from a random environment are the only cause of the component’s failures.

Let N
[i,k]
s (t), k = 1, 2, ...,K, t ≥ 0 be independent counting processes which describe the number of

shocks during [0, t) that cause the failure of components of meta-type k in phase i. Also suppose that
each fatal shock destroys, with equal probabilities, one of the components functioning at the time of
its occurrence and the shock has no impact on the other working components. It should be noted that
in each phase of the mission, the process of occurrence of shocks on each meta-type of components
is independent of the process of occurrence of shocks on other meta-type of components. Also, the
process of occurrence of shocks in each phase of the mission is independent of the process of occurrence
of shocks in other phases of the mission. Let

P [i,k]
r (t) = Pr(N [i,k]

s (t) = r), r = 0, 1, ..., i = 1, 2, ...,M, k = 1, 2, ...,K,

where P
[i,k]
r (t) denotes the probability that r shocks occur on the components of meta-type k for

duration time t in phase i. So the reliability of PMS is evaluated as follows

H̄s(t) =

n1,1∑
ℓ1,1=0

...

nγ(t),K∑
ℓγ(t),K=0

Φγ(t)(ℓ1,1, ..., ℓγ(t),K)Pr

[
γ(t)∩
i=1

K∩
k=1

(
N [i,k]
s (t⋆i − τi) = ni,k − ℓi,k

)]

=

n1,1∑
ℓ1,1=0

...

nγ(t),K∑
ℓγ(t),K=0

Φγ(t)(ℓ1,1, ..., ℓγ(t),K)

γ(t)∏
i=1

{∏
k∈E

P̄ [i,k]
ni,k

(t⋆i − τi)

}{ ∏
k∈Ec

P
[i,k]
ni,k−ℓi,k(t

⋆
i − τi)

}
, (3)

where E = {k; ℓi,k = 0} ⊆ {1, 2, ...,K} and

P̄ [i,k]
ni,k

(t⋆i − τi) =
∞∑

ui,k=ni,k

P [i,k]
ui,k

(t⋆i − τi).

Note that if all components of type k, k = 1, 2, ...,K, fail in phase i, i = 1, 2, ...,M , we can conclude

that at least ni,k out of N
[i,k]
s (t⋆i − τi) shocks have occurred. Therefore, we have

Pr(N [i,k]
s (t⋆i − τi) = ni,k − ℓi,k) =

{
P̄

[i,k]
ni,k (t

⋆
i − τi) =

∑∞
ui,k=ni,k

P
[i,k]
ui,k (t

⋆
i − τi) ℓi,k = 0

P
[i,k]
ni,k−ℓi,k(t

⋆
i − τi) ℓi,k = 1, 2, ..., ni,k.

2.2 PMS with components under aging and external shocks

Finally, if both the internal failure and external shocks cause the failure of the components of PMS,

we have N [i,k](t) = N
[i,k]
a (t⋆i,k)+N

[i]
s (t⋆i − τi) for t ≥ τi where N [i,k](t) denotes the number of the failed

components of meta-type k subject to aging and fatal shocks until time t in phase i. Also, suppose
that each shock destroys, with equal probabilities, one of the components functioning at the time of its
occurrence and the shock has no impact on the other working components. Under these assumptions,
in the next theorem, the reliability function of the PMS is obtained.

Theorem 2.2. Consider a PMS with the M phases consisting of n binary components of the K
different meta-type. Suppose that the random failure times of components are statistically independent
in the same phases and Fk(.) is the DF of random failure time of the components of meta-type k,
k = 1, 2, . . . ,K. Consider in addition to the aging, the components of meta-type k are subject to
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external shocks. The shocks appear based on counting process {{N [i,k]
s (t), t ≥ 0} where N [i,k]

s (t) shows
the number of shocks that occur on the components of meta-type k during time [0, t) in phase i. If
occurrence of internal failures and the external shocks are independent of each other, the reliability
function of PMS at time t is gotten as

H̄(t) =

n1,1∑
ℓ1,1=0

...

nγ(t),K∑
ℓγ(t),K=0

Φγ(t)(ℓ1,1, ..., ℓγ(t),K)

γ(t)∏
i=1

×

{∏
k∈E

ni,k∑
si,k=0

(
ni,k
si,k

)
(Fi,k(t

⋆
i,k))

si,k(1− Fi,k(t⋆i,k))ni,k−si,k P̄
[i,k]
ni,k−si,k(t

⋆
i − τi)

}

×

{ ∏
k∈Ec

ni,k−ℓi,k∑
si,k=0

(
ni,k
si,k

)
(Fi,k(t

⋆
i,k))

si,k(1− Fi,k(t⋆i,k))ni,k−si,kP
[i,k]
ni,k−ℓi,k−si,k(t

⋆
i − τi)

}
, (4)

where E = {k; ℓi,k = 0} ⊆ {1, 2, ...,K},

Fi,k(t
⋆
i,k) = 1−Ri,k(t⋆i,k) = 1−

1− Fk(t⋆i,k)
1− Fk(βi,k)

,

P
[i,k]
r (t) = Pr(N

[i,k]
s (t) = r), r = 0, 1, ...,, i = 1, 2, ...,M, k = 1, 2, ...,K,

P̄ [i,k]
ni,k

(t⋆i − τi) =
∞∑

ui,k=ni,k

P [i,k]
ui,k

(t⋆i − τi)

and t⋆i = min{t, τi+1}, t⋆i,k = min{t, τi+1} − τi + βi,k. Φγ(t)(ℓ1,1, ..., ℓγ(t),K) is also evaluated from
equation (1).

Example 2.3. Consider a PMS with n = 6 components and two phases. Suppose that the duration
time in each phase is 10 hours. The task in Phase 1 is done if all components A, B, and C work. Phase
2 is also completed if components C, and F work, and one of the components D, and E function.
Assume that the components are of three types: (type 1) components A and B with exponential
lifetimes with the rate 10−3 hours, (type 2) component C with exponential lifetime with the rate
2×10−3 hours and (type 3) components D, E and F have exponential lifetimes with the rate 3×10−3

hours. Table 1 gives the non-zero elements of the survival signature of the described PMS based on
relation (1).

Table 1. Survival signature of the PMS described in Example 2.3.
Phase 1 Phase 1 + 2

ℓ1,1 ℓ1,2 Φ1 ℓ1,1 ℓ1,2 ℓ2,2 ℓ2,3 Φ2

2 1 1 2 1 1 3 1
2 1 1 2 2

3

Assume that the shock processes are based on the non-homogeneous Poisson Processes (NHPP)
which affect the PMS components of meta-type k with intensity function λi,k(t) in phase i , i = 1, 2, 3.
Let λ1,1(t) = 0.00017t0.7, λ1,2(t) = 0.00015t0.5, λ2,2(t) = 0.00013t0.3, and λ2,3(t) = 0.00011t0.1. The
lifetimes of components of meta-type k are assumed to be independent of the process of shock’s
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occurrence. Then,

P [1,1]
r (t) = e10

−4t1.7 (10
−4t1.7)r

r!
,

P [1,2]
r (t) = e10

−4t1.5 (10
−4t1.5)r

r!
,

P [2,2]
r (t) = e10

−4t1.3 (10
−4t1.3)r

r!
,

P [2,3]
r (t) = e10

−4t1.1 (10
−4t1.1)r

r!
.

Figure 1 depicts the plots of H̄a(t), H̄s(t) and H̄(t), using relations (2), (6) and (4), respectively.
We also compare the reliability of this PMS based on the different proposed models in Figure 2.
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Figure 1: Reliability of the PMS in Example 2.3 based on the proposed models.
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Figure 2: Comparison the reliability of PMS in Example 2.3 based on the proposed models.
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A new discrete-time mixed δ-shock model
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Abstract

In this paper, a mixed δ-shock model with discrete-time is studied by combining δ-
shock and extreme shock models. In this model, a system fails in two ways: first, when k
interarrival times between two consecutive shocks with magnitude larger than the critical
threshold γ are in [δ1, δ2], δ1 < δ2; and second, when the interarrival time between two
consecutive shocks is less than δ1. The lifetime of the system under the proposed mixed
δ-shock model is investigated. Finaly, a numerical example is presented.

Keywords: Discrete time, Interarrival times, Lifetime, Mixed δ-shock model

1 Introduction

A shock model is introduced to represent the operating system failure process. In reliability, four major
shock models are studied: i) Shanthikumar and Sumita (1983) [12] and Gut (1990) [6] introduced the
cumulative shock model; ii) Gut and Hüsler (1999) [7] studied an extreme shock model that results
in the system failure if the magnitude of a shock is more than a threshold γ; iii) the run shock model
proposed by Mallor and Omey (2001) [10], and iv) the δ-shock model, a special type of shock model,
in which the system fails if the interarrival time between two consecutive shocks is less than a critical
threshold δ, and it is studied in detail by Li et al. (1999) [8], Wang and Zhang (2001) [13], Bai and
Xiao (2008) [1] and Eryilmaz (2013) [3]. Eryilmaz (2012) [2] studied the life behavior of a system
by assuming the arrival shocks to be a type of mixed shock model under the discrete probability

1me.125n2@gmail.com
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67



distribution. Eryilmaz (2015) [4] surveyed three different discrete-time shock models in two ways: (i)
shocks are independent, and (ii) shocks are Markov dependent. Lorvand et al. (2020) [9] investigated
an extended discrete-time mixed δ-shock model. Eryilmaz and Kan (2021) [5] studied a mixed shock
model for the case when the times between successive shocks and the magnitudes of shocks have
discrete phase-type distributions.

The purpose of this paper is to discuss the discrete-time version of the introduced mixed δ-shock
model by Roozegar et al. (2023) [11]. In this proposed mixed δ-shock model it is assumed that i) the
magnitudes of arrival shocks are random, and ii) interarrival times between two consecutive shocks are
independent and identically distributed (i.i.d.) sequence of geometric distribution with parameter p.
According to the definition, the multi-state system would fail in two ways: first, when k interarrival
times between two consecutive shocks with a magnitude larger than the critical threshold γ are in
[δ1, δ2], δ1 < δ2; and second, when the interarrival time between two consecutive shocks is less than δ1.

The rest of this paper is as following. We investigate the lifetime of the system under this discrete-
time mixed δ-shock model in Section 3. In Section 5, an example is established to evaluate the results.
Finally, the concluding remarks of this paper are presented in Section 4.

We will use the following terms to examine the properties of the behavior of the lifetime of this
mixed δ-shock model:

N Number of interarrival times between two consecutive shocks
until the system fails completely

Zi The magnitude of the ith shock
Xi Interarrival time between the (i− 1)th and ith shocks, for i = 1, 2, ...
δj The critical threshold for δ-shock, j = 1, 2
γ The critical threshold for shock magnitude
k Number of interarrival times between two consecutive shocks

with our considered condition δ1 < Xi < δ2, Zi > γ
T Lifetime of the system
F Cumulative distribution function

2 The behavior of the system’s lifetime

To obtain the lifetime of this discrete-time mixed δ-shock model, let N denote the number of inter-
arrival times between two successive shocks that cause the system to fail. So, N = n means that
n shocks arrived at the system. Then, it can be enumerated as follows, for j = 0, 1, . . . , k − 1 and
l = 0, 1, . . . , n− j − 1:
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(N = n)=
[
k − 1 of (n− 1) (Xi, Zi) are (δ1 < Xi < δ2, Zi > γ)

and
{
j of n− k (Xi, Zi) are (δ1 < Xi < δ2, Zi < γ)

and n− k − j of n− k (Xi, Zi) are Xi > δ2)
}

and δ1 < Xn < δ2, Zn > γ
]

∪
[
k − 1 of (n− 1)(Xi, Zi) are (δ1 < Xi < δ2, Zi > γ)

and
{
j of n− k (Xi, Zi) are (δ1 < Xi < δ2, Zi < γ)

and n− k − j of n− k (Xi, Zi) areXi > δ2)
}
and Xn < δ1

]
∪
[
j of (n− 1) (Xi, Zi) are (δ1 < Xi < δ2, Zi > γ)

and
{
l of n− j − 1 (Xi, Zi) are (δ1 < Xi < δ2, Zi < γ)

and (n− j − 1− l) of n− j − 1 (Xi, Zi) areXi > δ2)
}
and Xn < δ1

]
.

The following Theorem derived the pmf of lifetime of this discrete-time mixed δ-shock model
according to the definition of N .

Theorem 2.1. Suppose Xis are the interarrival times between two consecutive shocks and Zis are the
magnitudes of shocks and these are mutually independent, for i = 1, 2, · · · . Let T =

∑N
i=1Xi be the

lifetime of the system. Then, the pmf of the system’s lifetime is as follows:

P (T = n)=

[
n+(k+1)(δ2−δ1)

(δ2−δ1)+1
]∑

i=k+1

(
i− 2

k − 1

)[min(k,[
n−i−(i−(k+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
k

l

)
×
(
n− (i− (k − l)− 1)(δ2 − δ1)− 1

i− 1

)
pi(1− p)n−iF i−k(γ)F̄ k(γ)

+

k−1∑
j=0

[
n+(j+1)(δ2−δ1)

(δ2−δ1)+1
]∑

i=j+1

(
i− 1

j

)[min(j,[
n−i−(i−(j+1))(δ2−δ1)

(δ2−δ1)
])∑

l=0

(−1)l
(
j

l

)

×
(
n− (i− (j − 1)− 1)(δ2 − δ1)− 1

i− 1

)
pi(1− p)n−iF i−j−1(γ)F̄ j(γ).

(1)

3 Computational results

In this section, an example of this study is carried out to validate the analytical results obtained here.
It is assumed that the interarrival times X1, X2, · · · and the magnitudes of shocks Z1, Z2, · · · are i.i.d.
random variables having the geometric and the exponential distribution with the probability p = 0.8
and mean 0.5, respectively, and that they are also mutually independent.

Figure 1 presents the pmf of system lifetime P (T = n) for δ1 = 2, δ2 = 4, γ = 0.2, λ = 2, p = 0.8
with respect to k = 1, 2, 3, 4. As can be observed, the system’s lifetime decreases when k increasing.
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Figure 2 displays the plot of P (T = n) with respect to γ = 0.2, 0.5, 0.8, 1. As shown, the system’s
lifetime decreases when γ increasing. Also, the plot of P (T = n) is shown in Figure 3 with respect
to k = 2, 3, 4 where the system’s lifetime decreases when k increasing. In addition, with increasing
interarrival time [δ1, δ2] the lifetime of the system increases.
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Figure 1: The P (T = n) when δ1 = 2, δ2 = 4, γ = 0.2, λ = 2, p = 0.8 and for different values of k.
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0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

n

P(
T=

n)

k=2
k=3
k=4
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4 Conclusion

In this study, a mixed δ-shock model with discrete-time is defined by combining δ-shock and extreme
shock models, such that it causes the failure of a multi-state system in two ways: first, when k
interarrival times between two consecutive shocks with a magnitude of shock larger than threshold γ
is in [δ1, δ2], and second, when the time among two consecutive shocks is less than δ1. By assuming that
the shocks occur independently and randomly with the magnitude Zi and the interarrival times among
two consecutive shocks Xi which are i.i.d. random variables, we have derived explicit expressions for
the lifetime of the proposed mixed δ-shock model for system’s lifetime.
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Abstract

In this talk, we focus on the importance of system survivability in critical systems,
such as satellites and aircraft, where failure can result in significant economic loss and
human damage. We propose a mission abort policy as an effective means to enhance
system survivability and reduce the risk of system failure. Specifically, we consider a
coherent system with n components and abort the system mission if L components fail.
Our approach provides insights into the design of mission abort policies that can improve
system survivability and reduce economic losses.

Keywords: Mission abort policy, Signature vector, Mission success probability, Sys-
tem survival probability

1 Introduction

The survivability of critical systems takes precedence over completing a mission when failure during
the mission can result in significant economic loss and potential harm to human lives and the environ-
ment. Examples of critical systems include spaceships, aircraft, drones, satellites, and data processing
computer systems, where failure can lead to damage or loss of these objects. A mission abort policy
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can be implemented when a certain malfunction condition occurs or a certain number of components
fail, followed by a rescue procedure to save the system and prevent casualties, economic loss, and
environmental hazards. The mission success probability is a crucial metric for evaluating the perfor-
mance of critical systems, representing the probability of successfully completing a mission within a
specific time frame. Previous studies by Levitin et al. (2014), Peng et al. (2016), and Liu et al. (2018)
have focused on maximizing the mission success probability. Our paper emphasizes the importance
of system survivability and proposes a mission abort policy as an effective approach to enhance the
survivability of critical systems and reduce potential losses. Previous studies on evaluating mission
success probability have not considered the impact of mission abort policy on system survival proba-
bility and mission success probability. Traditional models focus solely on mission success probability
without accounting for the effectiveness of mission abort policies in enhancing system survivability.
Thus, computing mission success probability based on a mission abort policy is not a typical reliability
problem. A new approach is needed to accurately evaluate the performance of critical systems and the
effectiveness of mission abort policies in reducing potential losses and enhancing system survivability.

In critical systems, completing missions within a specified time frame is crucial. Mission abort
policies can enhance system survivability by minimizing the potential for system failures and increasing
the system’s chance of survival in hazardous environments. This policy can effectively reduce economic
losses by improving the system’s survival probability and providing greater protection against risk.
Additionally, mission abort policies can improve efficiency and reliability, leading to reduced operating
costs. Myers’ seminal work in 2009 on mission abort policies for a k-out-of-n system with an exponen-
tial distribution demonstrated the effectiveness of such policies in reducing overall failure probability
compared to systems without abort policies. This work laid the foundation for further investigations
into mission abort policies for complex systems with multiple sources of uncertainty. Mission abort
policies have proven to enhance the reliability of critical systems and expand their capabilities to
various tasks. Levitin et al. (2018) extended the mission abort model to heterogeneous systems and
adaptive abort policies, but their model did not consider the dynamic nature of stochastic environ-
ments and their impact on system behavior and performance. To overcome this limitation, further
investigation is needed to explore the effects of stochasticity on the operation, optimization, and con-
trol of adaptive abort policies in heterogeneous systems. Levitin and Finkelstein (2018) investigated
the mission abort policy based on the generalized extreme shock model and incorporated the effect of
the environment. However, their work did not account for the variability of the environment, which
can significantly impact the performance of the mission abort policy in real-world scenarios.

Previous studies have investigated the application of the generalized extreme shock model and
the duration of a defective state. Recently, Karimi and Tavangar (2023) extended and analyzed the
mission abort policy for a coherent system. In situations where a certain number of components fail, a
mission may need to be aborted to reduce the risk of system failure, requiring the immediate activation
of a rescue procedure. Samaniego (2007) and Kochar et al. (1990) obtained the reliability function of
a coherent system based on the signature vector of the system.

A main tool in studying coherent systems is the concept of signature. Suppose a coherent
system consists of n components whose failure times X1, X2, ..., Xn are independent and identically
distributed with a common continuous distribution F (t), and assume that X1:n, X2:n, ..., Xn:n denote
the order statistics corresponding to Xi’s. The system signature is defined as

si = P (T = Xi:n), i = 1, 2, ..., n, (1)

where T denotes the system lifetime. In fact, si is the probability that the component with lifetime
Xi:n causes the system failure. The probability vector s = (s1, s2, ..., sn) is then called the signature
vector of such a coherent system. It can be verified that si =

ni
n! , where ni is the number of ways that

distinct X1, X2, . . . , Xn can be ordered so that the ith ordered quantity corresponds to the system
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failure. Then, the reliability function F̄T (t) of the system can be represented as

F̄T (t) = P (T > t) =

n∑
i=1

siP (Xi:n > t). (2)

In this talk, we present a novel age-based system for computing the system survival probability
and mission success probability of a coherent system. We propose an extended mission abort policy
to provide a detailed analysis of the system’s behavior, including the probability of completing the
rescue procedure. We also investigate and discuss various stochastic order properties of the rescue
procedure.

2 Main results

In critical systems, the survival of the system is paramount, as failure can result in significant eco-
nomic loss. This paper considers a coherent system with n components that perform a fixed duration
tM (mission duration) under adverse environmental conditions, such as electric shock and lightning.
To enhance system survivability and minimize potential losses, Karimi and Tavangar (2023) proposed
a mission abort policy that triggers the rescue or recovery procedure if a predetermined number of
components (L components) fail then, in order to increase the survival of the system and decrease
the loss of the system, the mission must be aborted and immediately must be activated the rescue or
recovery procedure. Note that we treat the parameter L as a decision variable, enabling us to optimize
the mission abort policy effectively. In the following, some important criteria are developed under the
aforementioned assumptions.

2.1 Mission Success Probability (MSP)

The probability of mission success is a critical performance metric for evaluating the reliability of a
system, representing the likelihood of completing a specific mission within or before a given deadline.
To compute the probability of mission success, one must consider whether the system’s total life
expectancy exceeds the mission duration tM and whether the life expectancy of the Lth component
is also greater than tM , where 1 ≤ L ≤ n − 1. Ensuring that both of these criteria are met can
significantly improve system reliability. The mission success probability is defined as

MSP = R(tM , L) = P(T > tM , XL:n > tM )

= S̄LP(XL:n > tM ) +
L∑
j=1

sjP(Xj:n > tM )

where S̄L =
∑n

j=L+1 sj . It can be verified that the MSP can also be written as (see Karimi and
Tavangar, 2023)

MSP =
L−1∑
k=0

S̄k

(
n

k

)(
F (tM )

)k(
F̄ (tM )

)n−k
. (3)

Notice that, as expected, the MSP is decreasing in tM ; that is, the mission success probability
of the system declines with increasing the mission duration. Also, the MSP is increasing in L ∈
{1, 2, ..., n− 1}. This follows easily from the fact that

[T > tM , XL:n > tM ] ⊆ [T > tM , XL+1:n > tM ].

74



In the next theorem, we compared two coherent n-component systems based on their mission success
probabilities.

Theorem 2.1. (Karimi and Tavangar, 2023) Let S1 and S2 be two coherent systems with respective
signature vectors s1 and s2. Suppose that F and G are the common distributions of component lifetimes
of S1 and S2, respectively. If s1 ≤st s2 and F ≤st G, then MSP (1) ≤ MSP (2), where MSP (j) is the
mission success probability corresponding to system Sj, j = 1, 2.

2.2 Rescue Procedure (RP)

The rescue protocol is activated only when the Lth component of the system fails at an unforeseeable
time tF (the time at which mission abort occurs) before the mission termination time tM . For a
coherent system, the system does not fail during this period if the difference between the system’s
lifetime and the failure time of the Lth component exceeds a fixed time tR (duration of recovery or
rescue period), provided that the system’s lifetime exceeds that of the Lth component and the Lth
order statistic should be less than tM . Specifically, the system’s lifetime must be greater than or equal
to tF + tR. It is important to note that the initiation and duration of the rescue procedure cannot be
predetermined before the mission starts, emphasizing the need for an adaptive mission abort policy
that can effectively improve system survivability and reduce potential losses. The RP is defined as

RP = P(T −XL:n > tR | T > XL:n, XL:n < tM )

= P
(
T −XL:n > tR | XL:n < min(T, tM )

)
2.3 System survival probability (SSP)

The system survival probability is the probability that the mission and its associated rescue procedure
will be completed successfully. In other words, it captures the probability of success for a given mission
and any related rescue protocols.

SSP = S(tM , L, tR)

= P[(T > tM , XL:n > tM ) ∪ (T −XL:n > tR, XL:n < min(T, tM ))]

=MSP +RP × P[XL:n < min(T, tM )],

Where the second term represents the probability that the rescue procedure can successfully save the
system. The formula for the computation of RP and SSP along with their basic properties can be
found in Karimi and Tavangar (2023).

3 Examples

In this section, we provide some examples to examine the theoretical results of previous sections.
Suppose there are two bridge systems connected in parallel, and each system consists of components
that follow a Weibull distribution with shape parameter 1 and scale parameter 1 (the exponential
distribution). The signature vector for this parallel system can be calculated as follows:

s = (0, 4/45, 19/90, 3/10, 86/315, 34/315, 2/105, 0, 0, 0)
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We have also determined the mission success probability for this system, which is plotted in Figure 1.
If the mission abort occurs at the first order statistic (i.e., the first component failure), the probability
of mission success is the lowest. This is because a mission abort at this early stage indicates a critical
failure that may have a significant impact on the success of the mission. On the other hand, as the
order statistic for mission abort increases (i.e., the mission can continue despite more components
failing), the probability of completing the mission also increases. This is because the system is still
functioning despite the loss of one or more components, which indicates a higher level of redundancy
and resilience in the system

Figure 1: Mission success probability for L = 1 (Blue), L = 3 (Green), L = 5 (Red), L = 7
(Black).

We also determined the probability of completing the rescue procedure for different scenarios where
the mission abort occurs at different order statistics, as shown in Figure 2. As expected, the probability
of completing the rescue method is higher when the mission abort occurs at the first order statistic,
indicating a critical failure that has a significant impact on the rescue procedure’s success. Conversely,
if the mission abort occurs at a higher order statistic, the probability of completing the rescue method
decreases. This is because the system has experienced multiple failures, indicating a lower level of
redundancy and resilience, which can increase the risk of further failures and reduce the likelihood
of completing the rescue procedure successfully. Understanding the impact of order statistics on the
probability of completing the rescue procedure is crucial in designing reliable and robust systems for
emergency situations. By considering the order statistics and designing systems with redundancy and
resilience, we can improve the probability of mission success and ensure the safety and security of the
rescue operation and its personnel.

Figure 2: Rescue procedure for L = 1 (Blue), L = 3 (Green), L = 5 (Red), L = 7 (Black).
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Abstract

In many of reliability models, there exist certain information about the strength and
stresses that experienced by the system. We are interested in how the model functions via
these extra information or whether employing them does improve the performance of the
system. In the present study the conditional stress-strength parameter have been investi-
gated for s of k systems and the multi-component conditional stress-strength parameter
(MCCSSP) has been estimated by using the Bayesian and non-parametric methods. In
the case of having extra information about the parameters of the system, a closed form
has been derived for the Bayes estimator of MCCSSP and has been calculated by using
an algorithm together with Monte Carlo method. For simplicity, it has been done under
the assumption of exponential distributions for the strength and stress random variables
and gamma conjugates. For the case of non-exponential or general stress or strengths, the
nonparametric estimator of the considered parameter has been derived. Finally to verify
the analytic results, some simulation study for the Bayes estimator as well as nonpara-
metric estimation of a real data set and some comparisons have been done.
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1 Introduction

The effects of resistance and shocks which enter to a system are usually studied via a stress-strength
model. Due to the application of this model in various fields of science and technologies, recently they
have been studied a lot. In such models, when the stress that experienced by the system have been
represented by a random variable (RV) X and its strength by the RV Y , the stress-strength parameter
is denoted by R = P (X > Y ), it measures the chance of the system failure. For the majority of the
well-known distributions, including Normal, Exponential, Pareto, Uniform, Weibull, Gamma, Beta,
logistic, and Laplace, R has been studied by [3].

There are situations that one have some information about the stress and strength RV’s and knows
that they are greater than some pre-specified values, or one wants to know how much a system can
be reliable when stress and strength increase or decrease. In view of such conditions, the conditional
stress-strength parameter was introduced by [4] as:

R|a,b = P (X > Y | X > a, Y > b). (1)

The reliability of a multi-component stress-strength model was first developed by [1]. In this article,
we have focussed on the non-parametric and Bayes estimation of conditional stress-strength parameter
in multi-component systems and employ certain available information. The introduction of MCCSSP
as well as many other of its properties and behaviors can be found in [2].

The structure of this article is as follows: Some notation and formulas concerning MCCSSP will
have been provided in Section 2. In Section 3, the Bayes estimator of this parameter has been obtained
by adopting an algorithm and by using the Monte Carlo method. The corresponding nonparametric
estimator of this parameter has been obtained in Section 4. Section 5 is devoted to the presentation of
some simulation studies on the Bayesian and nonparametric estimators and their comparison. Some
numerical results for a real data-set have been presented in Section 6. Finally in Section 7, some
concluding remarks have been given.

2 The MCCSSP

The results of this section can be found in [2], where the MCCSSP will have been defined together
with a general formula for its computation.

Definition 2.1. Consider the independent RV’s X1, ..., Xk with common continuous distribution
function F (·), independent of continuous RV Y with distribution function G(·). The MCCSSP is
defined as:

R
|a,b
s,k = P (at least s of X1, ..., Xk exceed Y | X1 > a, ...,Xk > a, Y > b). (2)

A formula for computing (2) has been presented in the following theorem.

Theorem 2.2. If R
|s,k
a,b is defined by (2), then

R
|a,b
s,k =


∑k
i=s (

k
i)

∫∞
b [1−F (y)]i[F (y)−F (b)]k−idG(y)

[1−F (a)]k[1−G(b)]
a ≤ b∑k

i=s (
k
i)(

∫∞
a [G(x)−G(b)]dF (x))i(

∫∞
a [1−G(x)]dF (x))k−i

[1−F (a)]k[1−G(b)]
a > b

(3)

According to the calculations resulting in the formula (3), ifX1, . . . , Xk have different distributions,
it is not easy to calculate the analogous of this formula. In practice, there are some situations in them
Xi and Y have the same distributions, so in what follows, the formula (3) has been presented when
X1, . . . , Xk and Y have the same distributions.
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Corollary 2.3. Suppose that the continuous RV’s X1, ..., Xk and Y are independent and identically
distributed with probability density function(pdf) f(.) and cumulative distribution function(cdf) F (.).
Then,

R
|a,b
s,k =


∑k
i=s (

k
i)

∫ 1
F (b)[1−y]

i[y−F (b)]k−idy

[1−F (a)]k[1−F (b)]
, a ≤ b

(12)
k
∑k
i=s (

k
i)[1−2F (b)+F (a)]i[1−F (a)]k−i

[1−F (b)] , a > b.
(4)

The exponential RV is the most exploited lifetime distribution, so in the sake of simplicity and wide
applications the measure (3) has been evaluated for the exponentially distributed stresses and strength
RV’s with different parameters. The probability density and cumulative distribution functions of a
random variable X ∼ E(α) are denoted by: f(x) = αe−αx, and F (x) = 1− e−αx where x ≥ 0, α > 0.

Corollary 2.4. Suppose that Xi ∼ E(λ1) for i = 1, . . . , k and Y ∼ E(λ2) are independent, we have:

R
|a,b
s,k =

{
λ2e

−λ1k(b−a)∑k
i=s

∑k−i
j=0

(
k
i,j

) (−1)j

λ1(i+j)+λ2
a ≤ b

e−λ2(ak−b)[ λ1
λ1+λ2

]k
∑k

i=s

(
k
i

)
[λ1+λ2λ1

e−λ2(b−a) − 1]i a > b.
(5)

3 Bayes Estimation

In this section, the Bayesian estimation of the reliability parameter (5) has been considered. Suppose
that the parameters λ1 and λ2 are RV’s, and have independent Gamma prior distributions with
parameters (αi, βi), i = 1, 2 respectively. The pdf of a random variable X ∼ Gamma(αi, βi) is denoted
by:

π(x) =
βαii
Γ(αi)

xαi−1e−βix x > 0, αi > 0, βi > 0.

The joint posterior density function of the parameters based on this prior density and the likelihood
function can be written as follows:

π∗(λ1, λ2 | x,y) =
π(λ1, λ2,x,y)∫∞

0

∫∞
0 π(λ1, λ2,x,y)dλ1dλ2

where

π(λ1, λ2,x,y) = π(λ1)π(λ2)L(λ1, λ2)

∝ λα1+n−1
1 e−λ1(β1+

∑n
i=1 xi)λα2+m−1

2 e−λ2(β2+
∑m
j=1 yj).

After some calculus, one can see that the posterior density functions of λ1 and λ2 respectively are as:

π∗(λ1|λ2,x,y) ∝ Γ(α1 + n, β1 +

n∑
i=1

xi),

π∗(λ2|λ1,x,y) ∝ Γ(α2 +m,β2 +

m∑
j=1

yj).

The Bayes estimator of R
|a,b
s,k under the squared error loss (SEL) is obtained as:

R̃
|a,b
s,k = E(R

|a,b
s,k |x,y) =

∫ ∞

0

∫ ∞

0
R

|a,b
s,k π

∗(λ1, λ2 | x,y)dλ1dλ2. (6)
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It is not possible to calculate equation (6) analytically. Therefore, to compute the Bayes estimate of

reliability parameter R
|a,b
s,k , a Monte Carlo (MC) method has been adopted as follows:

Step 1: Set l=1.
Step 2: Generate X1, . . . , Xn from Exp(λ1).
Step 3: Generate Y1, . . . , Ym from Exp(λ2).
Step 4: Generate λl1 from Gamma(α1 + n, β1 +

∑n
i=1 xi).

Step 5: Generate λl2 from Gamma(α2 +m,β2 +
∑m

j=1 yj).

Step 6: Compute R
l|a,b
s,k at (λl1, λ

l
2).

Step 7: l=l+1.

Step 8: Repeat Steps 2 to 7, M times and obtain the posterior sample R
l|a,b
s,k for l = 1, ...,M .

Now the Bayes estimate of R
|a,b
s,k with respect to SEL will be obtained as follows:

R̃
|a,b
s,k =

1

M

M∑
l=1

R
l|a,b
s,k . (7)

4 Nonparametric Estimation

In this section a nonparametric method for estimating R
|a,b
s,k has been presented. Let n(.) be the

counting measure. For the sample space S and the event D as a subset of S the nonparametric
estimator of P (D) is defined as P̂ (D) = n(D)

n(S) . To obtain the nonparametric estimator of MCCSSP,

one may write (2) in the form:

R
|a,b
s,k =

P (at least s of X1, . . . , Xk exceed Y , X1 > a, . . . ,Xk > a, Y > b)

P (X1 > a, . . . ,Xk > a)P (Y > b)
, (8)

where P (X1 > a, . . . ,Xk > a)P (Y > b) > 0.
Let A = {(x1, . . . , xk, y) | at least s of x1, . . . , xk exceed y, x1 > a, . . . , xk > a, y > b}, B =
{(x1, . . . , xk) | x1 > a, . . . , xk > a} and C = {y | y > b}. The nonparametric estimator of (8)
can be written as follows:

R
NP |a,b
s,k =

n(A)

n(B)n(C)
. (9)

Let X1i, ..., Xki ∼ X for i = 1, ..., n and Y1, ..., Ym ∼ Y be independent random samples. Also, let
I(E) be the indicator function of the event E. We have:

n(B) =
n∑
i=1

I(X1i > a, . . . ,Xki > a), (10)

n(C) =

m∑
j=1

I(Yj > b), (11)

and by the properties of the indicator function:

n(A) =
n∑
i=1

m∑
j=1

I(s of X1i, ..., Xki exceed Yj)I(X1i > a, . . . ,Xki > a)I(Yj > b) + . . .

+

n∑
i=1

m∑
j=1

I(k of X1i, ..., Xki exceed Yj)I(X1i > a, . . . ,Xki > a)I(Yj > b).

(12)
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Let Xi = (X1i, . . . , Xki) for i = 1, . . . , n. Those observations Xi and Yj for them both Xi ≤ a and
Yj ≤ b simultaneously, have been removed in calculating n(A), since in details of calculating P (A)

or R
NP |a,b
s,k = n(A)

n(B)n(C) , the numerator is an strict subset of denominator. Note that in this case the

values of the second and third indicators will automatically equal one in n(A), (12). It is worth noting
that the number of remained samples of Xi and Yj are n(B) and n(C), so n(A) can be written as
follows:

n(A) =

n(B)∑
i=1

n(C)∑
j=1

I(s of X1i, ..., Xki exceed Yj) + . . .

+

n(B)∑
i=1

n(C)∑
j=1

I(k of X1i, ..., Xki exceed Yj).

In the case of n = m, the formula (9) may have simpler form and computations, since we only keep
those (X1i, ..., Xki, Yi) i = 1, ..., n which for them (X1i > a, ...,Xki > a, Yi > b) and remove the rest
and also n(B) = n(C).

In what follows, we introduce a definition and representation for non-parametric estimator of multi-
component stress-strength parameter. To the best of our knowledge, interestingly this estimator has
not been defined till now.

Definition 4.1. The nonparametric estimator of Rs,k is defined as follows:

RNPs,k =
n(A)

n(B)n(C)
(13)

where n(B) = n, n(C) = m and

n(A) =

n∑
i=1

m∑
j=1

I(s of X1i, ..., Xki exceed Yj) + · · ·+
n∑
i=1

m∑
j=1

I(k of X1i, ..., Xki exceed Yj).

Note that (13) can be obtained from (9) by assuming a = b = 0.
In applications, the data observed for different stresses may differ greatly in their values. Therefore,
selecting a minimum value of a, w.r.t. it all stresses in MCCSSP through definition 1, satisfy the
corresponding condition Xi > a, may be not useful. So, in what follows, the MCCSSP has been
defined in some general way to be more realistic and applicable.

Definition 4.2. The generalized conditional multi-component stress-strength parameter is defined as
follows:

R
|a1,...,ak,b
s,k = P (at least s of X1, ..., Xk exceed Y | X1 > a1, ..., Xk > ak, Y > b) (14)

where the RV’s Y,X1, ..., Xk are independent, G(·) is the continuous distribution function of Y and
F (·) is the common continuous distribution function of X1, ..., Xk.

Theorem 4.3. If Xri > max(a1, . . . , ak) for r = 1, . . . , k; i = 1, . . . , n and Yj > b for j = 1, . . . ,m

then R
NP |a1,...,ak,b
s,k = RNPs,k .

Proof. Replace I(X1i > a1, . . . , Xki > ak) with I(X1i > a, . . . ,Xki > a) in (10) and (12). Since
I(X1i > a1, . . . , Xki > ak) = 1 and I(Yj > b) = 1 we have n(B) = n, n(C) = m and n(A) =∑n

i=1

∑m
j=1 I(s of X1i, ..., Xki exceed Yj) + · · ·+

∑n
i=1

∑m
j=1 I(k of X1i, ..., Xki exceed Yj).
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Of course, (2) is a special case of (14). In parametric case (see [2] for the MLE method) when
a1, . . . , ak are closed in values, a can be considered as the minimum or maximum of a1, . . . , ak and hence
one may approximate (14) through (3). In some situations, a1, . . . , ak are very different, and using (14)
is not very helpful or may not be accurate. In these cases, the non-parametric method is more practical
and it is enough to consider A = {(x1, . . . , xk, y) | at least s of x1, . . . , xk exceed y, x1 > a1, . . . , xk >
ak, y > b}, and B = {(x1, . . . , xk) | x1 > a1, . . . , xk > ak} in (9). It is easy to see that the results of
nonparametric estimation of (8) can also be used for nonparametric estimation of (14), where ai is
substituted instead of a for i = 1, . . . , k. Note that in this case, one advantage of the nonparametric
method is that the assumption of common distribution for stress RV’s may be relaxed. The later
makes this method much more practical. If B = {(x1, . . . , xk, y) | x1 > a1, . . . , xk > ak, y > b}, then
the nonparametric estimator of the generalized MCCSSP where stresses and strength RV’s are not
independent, can also be easily computed through the same method.

5 Simulation

In this section, a simulation study has been done to assess the quality and the efficiency of performance

of R
|ab
s,k , its Bayes and nonparametric estimators. The simulations have been only done for a ̸= b since

for a = b the conditional and unconditional cases have the same results.
A comparison among R

NP |a,b
1,3 and R̃

|a,b
1,3 assuming α1 = 2, β1 = 3, α2 = 5, β2 = 4 for different values

of a and b, n = m = 100, λ1 = 0.0003 and λ2 = 0.0005 has been done and the results presented in
Tables 1 and 2.

Table 1. Comparison of R
NP |a,b
1,3 and R̃

|a,b
1,3 for a ≤ b

a 10 25 70 78 170 215 300
b 20 40 74 120 190 260 310

R
|a,b
1,3 0.8607 0.8568 0.8653 0.8362 0.8530 0.8340 0.8607

R̃
|a,b
1,3 0.8598 0.8559 0.8646 0.8349 0.8519 0.8321 0.8598

R
NP |a,b
1,3 0.8657 0.8655 0.8697 0.8681 0.8691 0.8646 0.8668

Bias(R̃
|a,b
1,3 ) -0.0008 -0.0009 -0.0007 -0.0013 -0.0010 -0.0019 -0.0008

Bias(R
NP |a,b
1,3 ) 0.0049 0.0087 0.0043 0.0618 0.0161 0.0305 0.0061

Table 2. Comparison of R
NP |a,b
1,3 and R̃

|a,b
1,3 for a > b

a 7 22 45 67 100 120 240
b 4 11 38 65 90 70 230

R
|a,b
1,3 0.9437 0.9377 0.9124 0.8877 0.8664 0.8867 0.7532

R̃
|a,b
1,3 0.9372 0.9313 0.90559 0.8812 0.8598 0.8805 0.7466

R
NP |a,b
1,3 0.8654 0.8658 0.8658 0.8653 0.8674 0.8686 0.8680

Bias(R̃
|a,b
1,3 ) -0.0064 -0.0063 -0.0064 -0.0065 -0.0065 -0.0062 -0.0065

Bias(R
NP |a,b
1,3 ) -0.0782 -0.0719 -0.0466 -0.0224 0.0097 -0.0181 0.1147

6 Real Data Analysis

In this section the numerical results of the parameters estimation for a real data set with Exponential
distribution have been presented. This data set was used for the first time by [5] and can be find in
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it. These data present the tensile properties of the jute fibres at different gauge lengths 5, 10, 15 and
20 mm which measured in MPa. The data sets corresponding to the breaking strength of jute fibres
with 10mm and 15mm gauge lengths have been considered as the stresses measurement and 20mm in
gauge lengths, which represents the strength measurement.

Each data has been separately fitted to the some exponential distribution and examined by using the
Kolmogorov-Smirnov goodness-of-fit test, the results have been reported in Table 3. The Kolmogorov-
Smirnov statistics and the corresponding P-values indicate that the Exponential distribution fits the
data sets. The estimation of MCCSSP for different values of a and b by nonparametric methods and
Bayesian approach assuming α1 = 2, β1 = 3, α2 = 5, β2 = 4 for parameters of prior distributions have
been presented in Table 4.

The data set consisting of the breaking strength of jute fiber 5 mm in gauge length have been fitted
with the Normal distribution with mean 384.37 and standard deviation 188.77 using the Kolmogorov-
Smirnov goodness-of-fit test. For this data, the Lilliforce significance correction criteria (modified
Kolmogorov-Smirnov test to check the normality of the data) and the P-value are 0.143 and 0.122.
Note that by adding this length to the model, the assumption of exponentially for all stresses fails. The
nonparametric estimators of MCCSSP for real data and different values of a1, a2, a3 and b have been
presented in Table 5 where X1 has Normal distribution, X2 and X3 have exponential distribution.

Table 3. K-S test for strength of jute fiber data

data Mean λ̂ K-S p-value

10 mm 365.72 0.0027 0.958 0.317
15 mm 367.87 0.0027 0.999 0.271
20 mm 340.74 0.0029 0.727 0.666

Table 4. Values of estimates of MCCSSP for real data
a 30 45 45 78 85 100 220
b 25 50 40 90 75 80 245

R̂
|a,b
1,2 0.7200 0.6680 0.6893 0.6432 0.6280 0.6288 0.5996

R̃
|a,b
1,2 0.7431 0.6737 0.6458 0.6207 0.6477 0.5970 0.6151

R
NP |a,b
1,2 0.6744 0.6760 0.6886 0.6462 0.6485 0.6485 0.6944

Table 5. Values of R
NP |a1,a2,a3,b
1,3 for real data

a1 10 42 80 111 150 215 300
a2 30 58 90 121 160 221 400
a3 60 71 100 171 170 240 100
b 34 54 85 154 165 220 340

R
NP |a1,a2,a3,b
1,3 0.730 0.736 0.705 0.750 0.859 0.625 0.750

7 Conclusion

The MCCSSP (R
|a,b
s,k ) as an appropriate extension of multi-component stress-strength parameter has

been estimated by Bayesian and non-parametric methods. Certain formulas for estimating the MCC-
SSP by Bayesian and nonparametric methods has also been presented. Some numerical computations
and simulation studies have been done for illustrating the inferential procedures.

In the past decades, a lot of researches have been done for studying the behavior of reliability func-
tion in multi-component stress-strength models, many of similar works can be done for the conditional

case. As an specific idea, R
|a,b
s,k can be obtained and estimated for other distributions. As another idea,

one may be interested in the amounts of information which are measurable, lost, unpredictable, etc.
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Abstract

This study considers survival data in which each subject can experience only one of
several different types of events over follow-up. When only one of several different types
of events can occur, we refer to the probabilities of these events as competing risks. This
study aimed to model the survival of patients with Brain stroke in the presence of com-
peting risks.
Materials and Methods: This retrospect survival study was conducted on 332 patients
with a definitive diagnosis of Brain stroke. The duration of data collection was from June
2005 up to June 2022 and the follow-up period of patients from the time of diagnosis
was 17 years. Data were analyzed by the Lunn-McNeil approach at alpha=0.1 with using
STATA version 17 (StataCorp, College Station, TX, USA).
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Results: Significant differences were found between Brain stroke and other causes of
death for the age category of 69-75 years, Employment status, Family history of stroke, a
history of high blood pressure.
Conclusion: Brain stroke -specific and non- Brain stroke -specific mortality had different
risk factors. These findings could be utilized to prescribe optimal and specific treatment.

Keywords: Brain Stroke, survival, competing risks, Lunn-McNeil model.

1 Introduction

In some mortality studies, several causes of death have consistently been found, only one of which
is the real cause of death. for example, Death in patients with Brain stroke (BS) may occur due to
stroke or other causes. This raises the question, what is the leading cause of death in these patients?
Therefore, it is necessary to investigate mortality in patients with BS according to the presence of
competing risks [13]. In the presence of competing risks, conventional statistical methods cannot be
used because simple survival analysis (Cox model) censors deaths due to other causes, leading to
biased estimates [14]. Therefore, to better understand the causes of death in patients with BS, we
investigated the causes of death in 2 groups of BS patients (death from stroke and death from other
causes) by modeling competing risk with the Lunn-McNeill (L-M) approach. BS is the second most
common cause of mortality in the world after heart disease (3). In the United States, 795,000 people
have strokes each year affecting the brain [5, 6]. The annual number of strokes is forecast to rise to
3.4 million between 2012 and 2030 [5, 8]. It is also estimated that the cost of treating this disease is
34 billion dollar annually [5, 9].
Studying modifiable risk factors can provide insights into appropriate treatment and prevention mea-
sures to enhance the survival of patients with BS [8, 10, 11]. The risk factors of BS are divided into 2
groups: the more important risk factors are age, high blood pressure, and heart disease, while second-
degree risk factors that are less important include a family history, high blood lipid levels, obesity,
smoking, neurological stress, and a history of BS [7]; some of these factors are modifiable, while others
are non-modifiable [2]. Understanding the distribution of these factors is of particular importance.

1.1 Statistical modeling:

Data were summarized and reported as frequency and percentage for categorical variables and as
mean (standard deviation [SD]) or median for continuous variables. The survival time of patients was
calculated by month. Significant risk factors (p < 0.1) in the univariate analysis were entered into the
multivariate analysis. The L-M model was used to generate results for the cause-specific assessment
of death by modifying the Cox proportional hazard (PH) model [12]. Based on the selected model,
and for each of the factors entered in the model, an unadjusted hazard ratio (HR) and an adjusted
HR (AHR) were presented along with their 90 % confidence intervals. The interaction L-M model was
used to compare BS and other causes of death. The Schoenfeld residual test was used to assess the
PH assumption for each variable. All analyses were performed using STATA version 17 (StataCorp,
College Station, TX, USA).
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2 Main results

The median follow-up time was 160.84 months (range, 59.51-164.58 months). Of the BS patients, 227
(68.4%) died from BS, while 54 (16.3%) died from other causes. (Table 1) provide more details on the
demographic characteristics.

Table 1. Participants demographic and clinical characteristics for risk factors of death from brain
stroke and other causes

Characteristic N (%) Brain stroke N (%) Other causes N (%)

Age category (years)
≤ 58 89 (26.8) 40(44.94) 12 (13.48)
59- 68 83 (25.0) 54(65.06) 19 (22.89)
69-75 97 (29.2) 81 (83.51) 12 (12.37)
≥ 76 63 (19.0) 52 (82.54) 11 (17.46)

Sex (female) 164 (49.4) 104 (63.41) 28 (17.07)
Employment status (employed) 291 (87.7) 188 (64.60) 52 (17.87)
Education level (≥ diploma) 84 (25.3) 52 (61.90) 12 (14.29)
Place of residence (city) 201 (60.5) 137(68.16) 30 (14.93)
Family history of stroke 80 (24.1) 46 (57.50) 17(21.25)

Family history of heart attack 24 (7.2) 16 (66.67) 2 (8.33)
Heart disease 86 (25.9) 63 (73.26) 12 (13.95)

History of diabetes 60 (18.1) 45 (75.0) 9 (15.0)
History of blood pressure 197 (59.3) 148 (75.13) 23 (11.68)
History of high cholesterol 62 (18.7) 37 (59.68) 10 (16.13)

Smoking (yes) 64 (19.3) 42 (65.63) 12 (18.57)
Water pipe smoking (yes) 11 (3.3) 10 (90.91) 0 (0.0)

Past smoking (yes) 95 (28.6) 69 (72.63) 17 (17.89)
Passive smoking (yes) 59 (17.8) 40 (67.80) 8 (13.56)
Physical activity (yes) 46 (13.9) 28 (60.87) 6 (13.04)

Cerebrovascular accident type (Ischemic) 266 (80.1) 177(66.54) 48 (18.05)

The multivariate L-M model (Table 2) showed that age (years), Sex, Employment status, History
of myocardial infarction (employed), History of high cholesterol, Water pipe smoking, Past smoking
were significant risk factors for death from BS (p¡0.1). In patients with other causes of death, History
of blood pressure and Past smoking were significant risk factors (p < 0.1).

88



Table 2. Results of multivariate Lunn-McNeil modeling for risk factors of death from brain stroke
and other causes

Characteristic Brain Stroke Other causes
Hazard ratio (90%CI) p-value Hazard ratio(90%CI) p-value

Age category (years)
<= 58 referent referent
59-68 1.50 (1.05-2.15) 0.000* NA
69-75 2.19 (1.58-3.03) 0.000* NA
76+ 2.13 (1.52-3.01) 0.000* NA
Sex (female) 1.38 (1.08-1.76) 0.029* NA
Employment status (employed) 0.64(0.46-0.90) 0.034* NA
History of myocardial infarction 0.78 (0.50-1.21) 0.369 NA
History of blood pressure NA NA 0.49(0.31-0.78) 0.021*
History of high cholesterol 0.62 (0.44-0.87) 0.021* NA
Water pipe smoking (yes) 2.78 (1.51-4.97) 0.005* NA
Past smoking (yes) 2.19 (1.70-2.81) 0.000* 1.64 (1.01-2.68) 0.095*
Cerebrovascular accident type (Ischemic) NA NA 1.75(0.84-3.66) 0.209

NA: not applicable; *P < 0.1; CI=Confidence interval

2.1 Comparison of mortality risk factors between BS and other
causes of death

Significant differences were found between BS and other causes of death for the age category of 69-75
years, Employment status, Family history of stroke, a history of high blood pressure (p < 0.1) (Table
3).

Table 3. Comparison between brain stroke and other causes of death using the interaction
Lunn-McNeil model

Characteristic Hazard ratio 90% confidence interval p-value

Age category (years)
≤ 58 referent
59-68 1.08 0.53-2.18 0.856
69-75 0.45 0.21-0.95 0.082*
76 0.62 0.28-1.34 0.309

Sex (female) 0.80 0.48-1.32 0.470
Education level ( diploma) 0.99 0.54-1.81 0.988

Employment status (employed) 0.17 0.05-0.60 0.021*
Place of residence (city) 1.25 0.75-2.09 0.453
Family history of stroke 0.55 0.31-0.97 0.085*

Family history of heart attack 1.43 0.40-5.11 0.637
Heart disease 1.36 0.75-2.46 0.392

History of diabetes 1.20 0.62-2.34 0.639
History of blood pressure 2.59 1.55-4.34 0.002*
History of high cholesterol 0.75 0.39-1.43 0.466

Smoking (yes) 0.86 0.47-1.59 0.698
Past smoking (yes) 1.01 0.58-1.76 0.962

Passive smoking (yes) 1.38 0.66-2.85 0.465
Physical activity (yes) 1.08 0.49-2.38 0.867

Cerebrovascular accident type (Ischemic) 0.46 0.21-1.01 0.101

*P < 0.1; CI=Confidence interval
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3 Discussion

The risk factors for mortality in patients with a BS diagnosis were compared between death from BS
and death from other causes in the context of competing risks. We overcame the problem raised in
the classical analysis (i.e., Cox regression) by utilizing the L-M approach. In classical analyses, it is
usually assumed that competing risks are independent. Considering the competing risks as the censor
and ignoring the risks incurred by other causes are the most crucial problems faced by the Cox model
when analyzing data in the presence of competing risks. This leads to biased estimates [1]. The L-M
model is a useful tool for analyzing data in the context of competing risks, in which the event occurs
for several reasons. In this form of modeling, it is possible to compare the effect of each variable
on competing causes of an event [4]. Therefore, in this study, the univariate and multivariate L-M
approach was used, considering the risk of death from BS and death from other causes as competing
risks.

Out of the 332 patients with a BS diagnosis, 227(68.4%) died from BS and 54 (16.3%) died from
other causes. In line with our study, Hardy et al. assessed long-term (10-year) mortality after BS in
Australia and reported a mortality rate of 79% [16]. The results of the univariate L-M analysis showed
that an older age, Sex, Employment status for death from BS. These results align with those reported
by studies conducted in Europe and the United States, according to which the highest mortality rate
is found in the ninth decade of life [17, 18]. Furthermore, in a study conducted in Farshchian Hospital
in Hamedan, patients under the age of 50 years had a lower risk of BS, and the risk of BS increased
with age (19). Men were at a higher risk of death than women, which is consistent with the results of
studies conducted in the United States [17], Europe [18], and Arab countries [20]. However, in some
other studies, such as in the Copenhagen cohort study (2005), women were 1.49 times more likely
to have died than men 10 years after a stroke [21]. This discrepancy may be due to physiological
differences between men and women. In the study by Madsen et al., risk factors such as diabetes,
metabolic syndrome, and migraine were found to increase the risk of stroke in women more than men,
and hypertension was found to be associated with age and ethnicity [22].

In this study, History of myocardial infarction, History of blood pressure, History of high choles-
terol, Water pipe smoking, Past smoking, Cerebrovascular accident type were significantly associated
with death from BS, and History of blood pressure, Past smoking and Cerebrovascular accident type
for death from Other. Hardy et al., in a study of 10-year survival after stroke, found that 79% of
patients died within 10 years, and the leading cause of mortality was initial stroke and cardiovascular
disease (27%) [23]. Another study showed that the overall mortality rate was 29%, and the mortality
rate in those 70+ years of age was 57.1% [24]. ocp use is affected by age, blood pressure, smoking, and
migraine [25]. A meta-analysis by Gillum et al. found that people on ocp had a higher risk of BS [26].
Stroke is divided into ischemic and hemorrhagic at the most basic level. In this study, approximately
80.1% of people had ischemic stroke, while 19.9% had hemorrhagic stroke. In line with our research, in
a long-term attenuation study of stroke among people aged 18 to 50 years in the New Jersey region of
the Netherlands in 2013 by Rutten et al., 606 of 959 (63%) patients had ischemic stroke [27]. In a 2016
study in Brazil, Goulart et al. found that the risk of death from hemorrhagic stroke was higher than
that of ischemic stroke [28]. The multivariate L-M model showed that age (years), Sex, Employment
status, History of myocardial infarction (employed), History of high cholesterol, Water pipe smoking,
Past smoking were significant risk factors for death from BS (p < 0.1). In patients with other causes
of death, History of blood pressure and Past smoking were significant risk factors (p < 0.1).
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3.1 Comparison of mortality risk factors between BS and other
causes of death

Significant differences were found between BS and other causes of death for the age category of 69-75
years, Employment status, Family history of stroke, a history of high blood pressure. According to
the results of the multivariate L-M model, the significant risk factors for mortality due to BS were
age (years), Sex, Employment status, History of myocardial infarction (employed), History of high
cholesterol, Water pipe smoking, Past smoking. In patients with other causes of death, History of
blood pressure and Past smoking were significant risk factors. Finally, according to the interaction
L-M model, age category of 69-75 years, Employment status, Family history of stroke, a history of
high blood pressure were significantly different between the 2 causes of death. The results of our study
align with those of Mogensen et al., who studied the long-term (10 years) outcomes of stroke in 988
patients and concluded that stroke death was related to old age, sex, diabetes, a history of stroke,
heart disease and non-vascular disease, and type of stroke (hemorrhagic) [29].

4 Conclusion

Differences were found between the 2 causes of death (BS and other causes) for some risk factors.
Patients with BS were more likely to die from BS than from other causes. The hypothesis that some
risk factors (demographic, clinical, and hereditary) may have different effects on the cause of death
(BS and other causes) was confirmed based on the findings of this study. These findings should be
considered for prevention, planning, health policymaking, and prescribing optimal and specific treat-
ment in order to increase survival in patients with BS.

Ethical Considerations: The Ethics Committee of Tarbiat Modares University of Medical Sci-
ences approved the protocol of this study (approval number: IR.MODARES.REC.1401.230).
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Abstract

In this note, we consider series systems consisting of arbitrarily dependent used
components. We study the lifetime of such systems using copulas family and obtain a
formula for its survival function. In following, we provide stochastic ordering properties
for the lifetimes of the series systems based on the mean function. Finally, to show the
results we give a numerical example.

Keywords: Copula, Mean function, Stochastic order, Reliability.

1 Introduction

From a long time ago, many authors have studies on the coherent systems, especially series and
parallel systems. It is well known that the reliability of a system depends on the structure of
the system and obviously to the reliability of its components. The series system is a system with
no redundancy which is used in various industries. Several researcher have tried to study on
properties of this system according to various concepts and criteria. Most of the old results were
gained on the condition of system components being independent. In practical perspectives we deal
with to systems which have dependent components. Therefore, the analysis of dynamic reliability,
particularly the study of the residual lifetime of systems, is the matter of interest in this case which

1salehi@birjandut.ac.ir
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is usually analyzed according to copulas theory. Copula function is a useful and efficient tools for
describing the dependence structure between the components of a system. In recent decades, many
researchers have focused their attention on this field, for instance you can see [4], [5], [7] and [8].

In some situations, it is possible for us to encounter systems consisting n-used components (see
[1] and [2]). Therefore, the attractive issue in here is to make a comparison between the residual
lifetimes of these systems from the theoretical viewpoint of dynamic reliability which is to be
investigated in this paper for series systems.

The present article has been arranged as follows. Some required concepts and preliminaries to
provide main results are presented in Section 2. In Section 3, at first the reliability function of the
series systems consisting of used components was obtained according to survival copula supposing
that the components were arbitrary. Then some properties of stochastic orderings for such systems
was presented base on the mean function. Finally, we present an illustrative example and graphs
to show the results.

2 Preliminaries

Before giving the main results,, we introduce the copula function and dependence concepts, for
more details see [6]. Also, we need to present concepts of Schur-concave (Schur-convex) and mean
function.

Definition 2.1. A (n-variate) copula is a function C : [0, 1]n → [0, 1] such that

1. for any ui ∈ [0, 1], C(1, . . . , 1, ui, 1, . . . , 1) = ui,

2. for any u1, . . . , ui−1, ui+1, . . . , un ∈ [0, 1], C(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0,

3. C is n-increasing.

For more details on an n-increasing function see [6] page 43. To present the next definitions we need
to explain the majorization order. A vector u = (u1, u2, . . . , un) is said to be majorized by another
vector v = (v1, v2, . . . , vn) (written as (u1, u2, . . . , un) ≤m (v1, v2, . . . , vn)) if

∑n
j=1 uj =

∑n
j=1 vj

and
∑i

j=1 uj:n ≥
∑i

j=1 vj:n for i = 1, 2, . . . , n− 1, where uj:n (vj:n) is the jth smallest element of
u (v), j = 1, 2, . . . , n.

Definition 2.2. Let g : Rn → R be a real-valued function, then g is Schur-concave (Schur-convex)
if

g(u1, u2, . . . , un) ≤ (≥)g(v1, v2, . . . , vn),

whenever (u1, u2, . . . , un) ≥m (v1, v2, . . . , vn).

Definition 2.3. Let g : Rn → R be a real-valued function, then g is weakly Schur-concave (weakly
Schur-convex) if

g(u1, u2, . . . , un) ≤ (≥)g(ū, ū, . . . , ū),

for all (u1, u2, . . . , un), where ū = 1
n

∑n
i=1 ui.

If a copula family is Schur-concave (Schur-convex), in fact it is weakly Schur-concave (weakly
Schur-convex), too. In the following we give the concept of mean function that is useful to present
the main results.
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Definition 2.4. Let g : Rn → R be a real-valued function, then the mean function associated
with g is any function g : Rn → R such that

g(u1, u2, . . . , un) = g(z, z, . . . , z),

for all (u1, u2, . . . , un), where z = mg(u1, u2, . . . , un). For more details about mean function mg see
[3] and the references therein.

Definition 2.5. Let X and Y be two nonnegative random variables with survival functions F̄ and
Ḡ, respectively. X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y ,
if for all t, F̄ (t) ≤ Ḡ(t).

3 Main results

Let T1, T2, . . . , Tn be the lifetimes of n components. Denote by T1:n, T2:n, . . . , Tn:n the ordered
lifetimes of the components. It is known that the lifetime of series system is T1:n. The joint survival
function of a n dependent lifetimes of components denoted by

F̄ (t1, t2, . . . , tn) = P (T1 > t1, T2 > t2, . . . , Tn > tn)

= Ĉ
(
F̄1(t1), F̄2(t2), . . . , F̄n(tn)

)
, (1)

with marginal survival functions F̄i(t) = P (Ti > t), i = 1, 2, . . . , n.

The reliability analysis and stochastic ordering properties of systems consisting of used components
of age t > 0 studied by [1], [2] and [9]. Let (Tt)i = (Ti − t|Ti > t), i = 1, 2, . . . , n be the

residual lifetimes of used components, where (Tt)i’s has the marginal survival function F̄i(x+t)
F̄i(t)

,

i = 1, 2, . . . , n. Also, assume that Ti’s have the survival copula Ĉ. The survival function of the
lifetime of the series system including used components denoted by (ψT1:n(x))t, is equal to

(ψT1:n(x))t = P ((Tt)1:n > x)

= Ĉ

(
F̄1(x+ t)

F̄1(t)
, . . . ,

F̄n(x+ t)

F̄n(t)

)
= Ĉ(κ(x, t), . . . , κ(x, t)) (2)

where κ(x, t) = mĈ

(
F̄1(x+t)
F̄1(t)

, . . . , F̄n(x+t)
F̄n(t)

)
, and mĈ is the mean function of Ĉ. Note that, the last

equality in Equation (2) is obtained from Definition 2.4.

Now, we have the following results. The following theorems can be proved similarly to Theorems
3.4, and hence their proofs are omitted here.

Theorem 3.1. Let T = (T1, T2, . . . , Tn), denoted the arbitrary dependent lifetimes of the compo-
nents of a series system. Let Ti’s, i = 1, 2, . . . , n, have the survival copula Ĉ with mean function
mĈ . Then (Tt)1:n ≤st (Tt)1:n−1 trues if and only if for all x, t > 0,

mĈ

(
F̄1(x+ t)

F̄1(t)
, . . . ,

F̄n(x+ t)

F̄n(t)

)
≤ mĈ

(
F̄1(x+ t)

F̄1(t)
, . . . ,

F̄n−1(x+ t)

F̄n−1(t)

)
,

where F̄i(x+t)
F̄i(t)

is the marginal survival function of (Tt)i, i = 1, 2, . . . , n.
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Theorem 3.2. Let T = (T1, T2, . . . , Tn) and Z = (Z1, Z2, . . . , Zn) be the arbitrary vectors of
components lifetimes of two series systems. Also assume that T and Z have the same survival
copula Ĉ with mean function mĈ . Then (Tt)1:n ≤st (Zt)1:n if and only if for all x, t > 0,

mĈ

(
F̄1(x+ t)

F̄1(t)
, . . . ,

F̄n(x+ t)

F̄n(t)

)
≤ mĈ

(
Ḡ1(x+ t)

Ḡ1(t)
, . . . ,

Ḡn(x+ t)

Ḡn(t)

)
,

where F̄i(x+t)
F̄i(t)

and Ḡi(x+t)
Ḡi(t)

are the marginal survival function of (Tt)i and (Zt)i, i = 1, 2, . . . , n,

respectively.

Corollary 3.3. Let T = (T1, T2, . . . , Tn) be the arbitrary components lifetimes of a series system
and Z = (Z1, Z2, . . . , Zn) be the exchangeable components lifetimes of another series system. Also,
assume that T and Z have the same survival copula Ĉ with mean function mĈ , then (Tt)1:n ≤st
(Zt)1:n trues if and only if for all x, t > 0,

mĈ

(
F̄1(x+ t)

F̄1(t)
, . . . ,

F̄n(x+ t)

F̄n(t)

)
≤ Ḡ(x+ t)

Ḡ(t)
,

where F̄i(x+t)
F̄i(t)

and Ḡ(x+t)
Ḡ(t)

are the marginal survival function of (Tt)i and (Zt)i, i = 1, 2, . . . , n,

respectively.

Theorem 3.4. Let T = (T1, T2, . . . , Tn) (Z = (Z1, Z2, . . . , Zn)) denote the arbitrary dependent
lifetimes of the components of two series systems. Also, assume that T and Z have the survival
copula ĈT and ĈZ , respectively, such that ĈT ≤ ĈZ . Then (Tt)1:n ≤st (Zt)1:n, if for all x, t > 0,

mĈT

(
F̄1(x+ t)

F̄1(t)
, . . . ,

F̄n(x+ t)

F̄n(t)

)
≤ mĈZ

(
Ḡ1(x+ t)

Ḡ1(t)
, . . . ,

Ḡn(x+ t)

Ḡn(t)

)
, (3)

where F̄i(x+t)
F̄i(t)

and Ḡi(x+t)
Ḡi(t)

are the marginal survival function of (Tt)i and (Zt)i, i = 1, 2, . . . , n,

respectively.

Proof. From (2) and after some simplifications we have for all x, t > 0,

(ψT1:n(x))t = ĈT (κ1(x, t), . . . , κ1(x, t))

≤ ĈT (κ2(x, t), . . . , κ2(x, t))

≤ ĈZ(κ2(x, t), . . . , κ2(x, t)) = (ψZ1:n(x))t,

where κ1(x, t) = mĈT

(
F̄1(x+t)
F̄1(t)

, . . . , F̄n(x+t)
F̄n(t)

)
and κ2(x, t) = mĈZ

(
Ḡ1(x+t)
Ḡ1(t)

, . . . , Ḡn(x+t)
Ḡn(t)

)
. In the

above expression, the first inequality follows from (3) and the second inequality obtain by ĈT ≤ ĈZ .
Therefore, the proof is complete.

In the following we give a numerical example to apply the result of Theorem 3.4.

Example 3.5. Let T = (T1, T2) and Z = (Z1, Z2) be the vectors of component lifetimes of two
series systems. Assume that T and Z have a Ali-Mikhail-Haq (AMH) bivariate survival copula
(ĈT ) and Gumbel-Hougaard (GH) bivariate survival copula (ĈZ), respectively, i.e.

ĈT (u, v) =
uv

1− θ1(1− u)(1− v)
, θ1 ∈ [−1, 1] (4)

ĈZ(u, v) = exp

{
−
[
(− lnu)θ2 + (− ln v)θ2

] 1
θ2

}
, θ2 ∈ [1,∞). (5)
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Figure 1: The curves of mean functions.

Since, the mean function of Archimedean copulas is equal to ϕ−1
(
1
n

∑n
i=1 ϕ(ui)

)
(See [5]), after

some simplifications, the mean function of AMH survival copula for and GH survival copula are
obtained, respectively, as follow:

mĈT
(u, v) =

1− θ1√(
1−θ1(1−u)

u

)(
1−θ1(1−v)

v

)
− θ1

, θ1 ∈ [−1, 1], (6)

mĈZ
(u, v) = exp

{
−
[
(− lnu)θ2 + (− ln v)θ2

2

] 1
θ2

}
, θ2 ∈ [1,∞). (7)

Also, let Ti has exponential distribution with mean 1
λi

and Zi has Pareto distribution with

marginal distribution function Fi(x) = 1 − (βix )
αi , i = 1, 2. From (6) and (7), we can obtain

easily mĈT

(
F̄1(x+t)
F̄1(t)

, F̄2(x+t)
F̄2(t)

)
and mĈZ

(
Ḡ1(x+t)
Ḡ1(t)

, Ḡ2(x+t)
Ḡ2(t)

)
.

On the other hand, from (2), the survival functions of two series system residual lifetimes are equal
to

(ψT1:2(x))t =
F̄1(x+ t)F̄2(x+ t)

F̄1(t)F̄2(t)− θ1(F̄2(t)− F̄2(x+ t))(F̄2(t)− F̄2(x+ t))
,

(ψZ1:2(x))t = exp

−
[(
− ln

Ḡ1(x+ t)

Ḡ1(t)

)θ2
+

(
− ln

Ḡ2(x+ t)

Ḡ2(t)

)θ2] 1
θ2

 .

For θ1 = 0.4 and θ2 = 3 in (1) and (2), it can be shown that ĈT (u, v) ≤ ĈZ(u, v). Furthermore,
the graphs of mean functions mĈt,T

and mĈt,Z
are given Fig. 1,for λ1 = 1, λ2 = 2, α1 = 3, β1 = 1,

α2 = 1, β2 = 2, θ1 = 0.4 and θ2 = 3 at the fixed point t = 2. Therefore, the conditions of Theorem
3.4 are satisfied. Also, we plot the graphs of the survival functions (ψT1:2(x))t and (ψZ1:2(x))t for the
listed values of the parameters in Fig. 2. Hence, it is an application of Theorem 3.4.

98



Figure 2: The curves of survival functions.
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The optimal age replacement strategy under epistemic

uncertainty
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Abstract

Applying the theory of uncertainty is a good approach to study the reliability of
a system when there is a little frequency of suitable data. Based on this theory, the
policy of age replacement is considered assuming the system lifetime follows Weibull
distribution. The unknown parameters are estimated according to evidence theory
that affects the epistemic uncertainty. The Dempster-Shafer as well as Yager rules are
applied to aggregate the judgements and mental estimates of two or more experts. After
determining the unknown parameters, the optimal replacement time is derived using
the long-run cost criterion. The results show that the Dempster-Shafer rule is more
accurate than yager rule, but Yager’s rule is more conservative than Dempster-Shafer’s
rule.

Keywords: Dempster-shafer theory; Maintenance policy; Uncertainty theory;
Yager rule.

1 Introduction

When a system failure occurs, system access and reliability are reduced, leading to unexpected
and catastrophic damage. Some systems have a set of core components that are expensive and we

1 sshahraki7@gmail.com
2razmkhah m@um.ac.ir
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expect them to work without breakdowns for a long time. Due to their high price, these parts must
be repaired when they fail. Therefore, by adopting the appropriate optimal maintenance policies
and also identifying the sensitive units that need to be maintained, a high level of system reliability
will be ensured and suitable models for optimizing system replacement and repair times can be
provided.
In some reliability analyses, the probability distribution of unit lifetime data or the probability
distribution of time to unit failure is not already known. In these cases, we have to estimate
the probability distribution through a large number of samples. However, due to economic or
technical issues, little or no data is available in some situations. As a result, the reliability of the
system is unknown. Therefore, for such events for which it is not possible to measure frequency,
the one way is to use the judgments and mental estimates of experts of the relevant field. Using
this method, decision makers introduce more uncertainty approaches into the analysis due to
insufficient knowledge of the credibility and knowledge of the requested experts (because humans
tend to overestimate unlikely events). Therefore, the degree of belief usually has a wider range than
the actual frequency. So, applying the theory of probability in such cases does not seem suitable,
because of little frequency of available data in some real conditions.
Different theories have been proposed to solve this problem, such as fuzzy set theory by Zadeh [13],
possibility theory by Zadeh [14] and Dubois and Prade [3], uncertainty theory by Liu [5, 6] and
chance theory by Liu [8, 9].We use the uncertainty theory for lifetime and time data until units
fail. Uncertainty theory was proposed by Liu [5] to deal with uncertainty caused by the degree of
human belief in 2007. Regarding the use of experts’ mental opinions, Siuta et al. [10], and Tsao
[11] mention that mental opinions of the experts play a crucial role in uncertain environments
and that experts are the only reliable and accessible source of information. There are various
modern approaches to consider expert opinions such as fuzzy sets [13, 7], Dempster-Schaffer theory
[2, 12] and theory of possibility [4]. Dempster-Shafer’s theory (DST) of evidence was chosen as
the appropriate mathematical framework to handle the presence of cognitive uncertainty. This
theorem is a suitable theory to combine the opinions of two or more experts due to its very strong
theoretical basis. Under the DST framework, expert judgments are transformed into a set of beliefs
and, according to the combination rule of Dempster and Yager are assembled to determine the
minimum and maximum reliability of the system. Assuming there are human uncertainties in the
performance of systems, this paper discusses the age replacement policy introduced by Barlow
and Hunter [1] based on the Dempster-Schaffer theorem. It also compares the results of the use of
Dempster-Schaffer and Yager methods in this maintenance policy.

2 Preliminaries

The Dempster-Shafer Theory (DST) is a mathematical theory of evidence theory which is defined
by three important functions: the Basic Probability Assignment (bpa) or belief mass, the Belief
(Bel) and the Plausibility (Pl).
In evidence theory, for the sample space Θ with the power set PΘ degrees of evidence are assigned
to the subsets of pi ∈ PΘ. Any subset pi of PΘ with non-zero evidence degree is called a focal
element. The power set PΘ is the set of all possible sub-sets of Θ including the empty set ∅. For
example, if:

Θ = {a, b}
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Then
PΘ = {∅, {a}, {b},Θ}

The bpa(A) represents the amount of knowledge associated with the subset A of PΘ. Lets indicate
by m(A) the bpa related to every subset A. Each subset of the power set is assigned a mass value
m between 0 and 1 according to the theory of evidence. The DST is the most suitable theory to
combine the beliefs of two or more experts. Considering two experts and assuming the independence
of their opinions, the DST is involved with joining two separate sets of mass functions on a frame
of discernment Θ, such as m1 and m2. The combined mass function of m1 and m2 (the joint mass)
in this situation would be represented as m1,2 where:

m1,2(A) = [m1 ⊕m2](A) =

{
0, for A = ∅∑

B∩C=Am1(B).m2(C)
1−k , for A ̸= ∅

(1)

where m1(B) and m2(C) are the bpa expressed by the two sources of information 1 and 2 with
relation to elements B and C respectively. Moreover, k =

∑
B∩C=∅m1(B).m2(C) represents the

conflicting evidence. To review the properties of m(.), refer to [5].
If there is a lot of dispute among sources, some dubious findings might be obtained in DST.
Therefore, the Yagers combination rule is alternatively used to aggregate the bpa associated to
the set A, such that

[m1 ⊕m2](A) =


0, for A = ∅∑

B∩C=Am1(B).m2(C), for A ̸= Ω∑
B∩C=Am1(B).m2(C) + k, for A = Ω

(2)

3 Model description

Consider a system that has only one component and starts operating at t=0. Its lifetime cumulative
distribution function (cdf) is F (t). The system is replaced when it reaches age T , or at its failure,
whichever occurs first. Assume that the emergency repair ER costs cER, and the preventive repair
at age T costs cPM . Each replacement completely renews the system and takes a negligible time.
Denote by τ the unit’s lifetime. Let Z = min(τ, T ). The inter-renewal period has mean

E(Z) =

∫ T

0
(1− F (x))dx, (3)

The mean cost per unit time is

η(T ) =
cERF (T ) + cPM (1− F (T ))∫ T

0 (1− F (x))dx
= cER

(
F (T ) + c(1− F (T ))∫ T

0 (1− F (x))dx

)
, (4)

where c = cPM
cER

< 1. For more details about the age replacement policy, see Barlow and Hunter [1].
Now suppose that the lifetime follows the two-parameter Weibull distribution with the probability
density function (pdf):

f(t) =
β

α
(
t

α
)β−1 exp{−( t

α
)β}., β, α, t ≥ 0 (5)

and the cdf

F (t) = 1− exp{−( t
α
)β}. (6)
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From (4), we get

η(T ) = cER

(
1 + (c− 1) exp{−(Tα )

β}∫ T
0 exp{−( xα)β}dx

)
, (7)

The main goal in this policy is to obtain the optimal replacemrnt time T , denoted by T ∗, which
minimizes the function (7). If the model parameters are known then the optimal T ∗ may be
numerically obtained.
The cost function η(T ) of Equation (7) is clearly increasing relative to the parameter α.

When the model parameters are unknown, in reliability analysis, product life data (the lifetimes of
the products operated successfully or time to failure and time to repair data) are used to estimate
the unknown parameters and the reliability characteristics. These data points normally follow some
probability distributions. They are required to identify the best-fit distribution and estimate the
parameters of the distribution by some statistical methods like maximum likelihood estimation,
least-square method and probability plotting. But, in many situations, these life data sets are not
sufficient to use these methods of parameter estimation. In such cases, the model parameters can
be alternatively determined by using the knowledge or experience of the experts which is called
the expert judgment-based parameter estimation method.

4 Expert judgement based approach

As stated in the previous section, when no lifetime data are available to estimate the probability
distribution parameters , we have to invite some domain experts to evaluate the belief degree
that each event will happen. Perhaps some people think that the belief degree should be modeled
by subjective probability or fuzzy set theory. However, it is usually inappropriate because both
of them may lead to counterintuitive results in this case. In order to rationally deal with belief
degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers.
Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief
degrees.
The steps for applying the DST based approach to investigate the cognitive uncertainty of system
reliability data are: First expert’s judgments turn into a set of beliefs that can extract system-
related credibility data according to each expert. Credibility data extracted from each expert’s
knowledge are then converted to bpa. Finally, the bpa values are aggregated according to the
DST and Yager combination rules, and the system credibility limits can be obtained based on
the combination of the opinions of all experts. Assume that the time to failure system follows a
two-parameter Weibull distribution. If one of the parameters of the model is unknown, in order
to use the expert judgment method to estimate the unknown parameter the following question is
asked from the experts:
What is the average lifetime of the system a period of time?
Experts can not directly show the value of µ using a clear value because this value is strongly
influenced by the specific operating conditions of the system under consideration. Instead, they
are more realistically able to provide µ as an interval. Therefore, the eth (e = 1, 2, 3, ..., E) is asked
to state the interval in which he/she believes the actual value of µ falls. For example, the data
collected by expert e for the component is the interval [µ, µ]e. In what follows, we assume β is
known and α is unknown. Note that the mean of the distribution (5):

µ = αΓ(1 +
1

β
). (8)
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Therefore, the judged interval [µ, µ]e can be represented as follows

[µ, µ]e =

[
αΓ(1 +

1

β
), αΓ(1 +

1

β
)

]
e

(9)

After collecting [µ, µ]e, the interval value of the scale parameter[α, α]e can be calculated according

to (9). Then, the lower and upper limit values of the reliability of the component in T0, i.e. [R,R]e,
can be obtained using the following equation:

[R(T0), R(T0)]e =

[
exp{−(T0

α
)β}, exp{−(T0

α
)β}
]
e

(10)

Now we want to convert the reliability data calculated from the experience of experts to bpa. As-
sume that, the selected FOD = {W,F} is discrete, where W and F respectively show the working
and failure conditions of component . In addition, the resulting power set is {∅, {W}, {F}, {W,F}}.
Considering the DST framework, the maximum values of the interval [R,R]e can be explained as
the minimum and maximum belief that the expert e relates it to the Working state event (i.e.
W) for the component at the end of the working period T . so, these two bounds indicate Belief
and Plausibility of this statement that the component is in the working condition W at the end
of the working period T, the Re = Bel(W )e = m(W )e and Re = Pl(W )e = 1 − m(F )e. Also
m(W,F )e = 1−m(W )e −m(F )e. To illustrate the proposed procedure, an illustrative example is
reported in the following. Lets assume a mission time T0 equal to 200 time units. The parameter
β = 2. The judgment intervals [µ, µ]e for the mean of distribution which are expressed by four
experts (i.e. e = 1,2,3,4) are reported in Table 1. The corresponding values of the scale parameter
[α, α]e are computed by using (9), and interval-valued reliabilities of the component are also shown
in Table 1.

Table 1. Computation of reliability at time T0 based on opinions of 4 experts
Expert µ µ α α R(T0) R(T0)

1 250 340 282.0948 383.6489 0.6049 0.7620
2 280 420 315.9464 473.9193 0.6698 0.8368
3 290 450 327.2300 507.7706 0.6883 0.8563
4 300 470 338.5138 530.3382 0.7053 0.8674

The valued of bpas are first computed based on the opinions of four expert, separately. Then, the
bpas are aggregated by the Dempster and Yager rules using (1) and (2), respectively. The results
are presented in Table2 and Table 3.

Table 2. The bpas for any expert
[R(T0), R(T0)]

e me(W ) me(F ) me(W,F )
1 0.6049 0.2380 0.1571
2 0.6698 0.1632 0.1670
3 0.6883 0.1437 0.1680
4 0.7053 0.1326 0.1621

Table 3. The aggregated bpa based on opinions of 4 experts

Aggregated bpa
Dempster’s rule Yager’s rule

[m1 ⊕m2 ⊕m3 ⊕m4](W ) 0.9753 0.4730
[m1 ⊕m2 ⊕m3 ⊕m4](F ) 0.0232 0.0113

[m1 ⊕m2 ⊕m3 ⊕m4](W,F ) 0.0015 0.5157
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The lower bound of the components reliability at T0 (i.e. Bel(W )) is the aggregated value of the
m(W )e of the four experts, namely equal to [m1⊕m2⊕m3⊕m4](W ). The corresponding upper
bound Pl(W ) is computed as 1− [m1⊕m2⊕m3⊕m4](F ). Therefore, according to the aggregated
data in Table 3, the interval [R(T0), R(T0)] (credibility interval) of the working state event of the
component at time T0 = 200 based on Yager and DST rules are derived as

[R,R] =

{
[0.4730, 0.9887], Yager rule,
[0.9753, 0.9768], DST rule.

(11)

Hence, by solving the equations in (10), an interval-valued estimation for the scale parameter may
be obtained as

[α, α] =

{
[231.1364, 1878.9620], Yager rule,
[1264.5330, 1304.511], DST rule.

(12)

5 Optimal maintenance problem

In this section we are going to optimize cost function (7) based on obtained credibility intervals
for component under Yager and Dempester’s rules. The optimal period of age replacement based
on Yager and Dempster’s rule are denoted by T ∗

Y and T ∗
D, respectively. The corresponding cost

functions are also denoted by ηY (·) and ηD(·), respectively. That is ηY (T
∗
Y ) = minT ηY (T ) and

ηD(T
∗
D) = minT ηD(T ).

To compare the performance of the Yager and Dempester rules, the following efficiency criterion
is defined:

eff(ηY , ηD) =
ηD(T

∗
D)

ηY (T ∗
Y )

(13)

According to the criterion (13), the Yager’s rule is more efficient than Dempster’s rule when
eff(ηY , ηD) > 1. To obtain the optimal replacemant time with a given shape parameter β and a
given cost c for different values of T0 in a large set {1, 2, 3, ..., 1000} are initially used to determine a
suitable judgement interval for the unknown parameter α. For different values of T0, similar to the
computational method used in Section 4, a judgement interval [αT0 , αT0 ] is determined for the scale
parameter based on Yager and DST rules. We calculate the minimum cost and correspondingly
the optimal value of replacemant time for each T0. since the cost function ηY (T ) is increasing in α,
we use the minimum value of α to obtain the minimum value of the cost function. Therefore, the
optimal value of replacement time for Yager and Dempester’s rules may be derived. The results
are presented in Table 4 for different values of c.

Table 4. Total expected Cost per unit time
Yager DST

c T ∗
Y ηY (T ∗

Y ) T ∗
D ηD(T ∗

D) eff
0.05 66.7986 151.0261 95.7358 105.3767 0.69773834
0.06 73.6315 164.7223 105.5287 114.9331 0.69773856
0.07 80.0343 177.4007 114.7053 123.5984 0.69671878
0.08 86.1085 188.5363 123.4109 131.5491 0.69773884
0.09 91.9246 199.3744 131.7465 138.9079 0.69671884
0.10 97.5341 208.9104 139.7860 145.7649 0.69773884
0.11 102.9760 218.1158 147.5854 152.8780 0.70090291
0.12 108.2810 226.7753 155.1884 158.2299 0.69773869
0.13 113.4734 234.9495 162.6303 163.9333 0.69773845
0.14 118.5736 242.6875 169.9398 169.3325 0.69773886
0.15 123.5984 250.0303 177.1413 174.4557 0.69773823

105



From Table 4, it is observed that:
1. As the value of c increases, the optimal replacement time for both Yager and Dempster rule’s
increases.
2. For all values of c, the optimal replacement time according to Dempster’s rule T ∗

D is greater
than the optimal replacement time according to Yager’s rule T ∗

Y , but the minimum value of the
cost function according to Dempster’s rule ηD(T

∗
D) is slightly less than the minimum value of the

cost function according to yager rule ηY (T
∗
Y ).

3. For all values of c, the value of efficiency is less than 1 and this means the Dempster’s rule is
more efficient than yager’s rule.

6 Conclusions

An optimal age replacement strategy was studied under the epistemic uncertainty. For the situa-
tions in which the parameter of the distribution is unknown and little or no data are available to
estimate the parameter, the Dempster-Shafer reasoning method was used to determine the model
parameters based on the judgements and mental estimates of some experts in the relevant field.
At first, the opinions of some experts were used to determine the unknown parameter about the
average lifetime system. The knowledge of each expert was asked about the average lifetime of
the system and the responses were converted to bpa values. Then, the obtained bpas for all ex-
perts were aggregated using the DST and Yager rules and they are used to specify the optimal
maintenance policy. The results showed that DST rule is more accurate than yager rule, but yager
rule works more conservatively than DST rule. The results of the paper may be extended to other
maintenance model for a multicomponent system subject to more constraints.
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Abstract

As a new flexible family of distributions, the α-mixture model includes many
existing mixture models as special cases. This paper is an attempt to the usual
stochastic order of this family when the underlying distribution follows from the
proportional odds model. Sufficient conditions are provided for comparing two finite
α-mixtures of survival functions with the baseline survival functions following the PO
model in the sense of usual stochastic order when both the mixing proportions and
the PO parameters of the first α-mixture majorize the mixing proportions and the PO
parameters of the second one. Also, an upper bound for the reliability function of the
α-mixture of survival function. Moreover, similar results are obtained for the α-mixture
of cumulative distribution function. Finally, our theoretical findings are evaluated by
some numerical examples.

Keywords: Mixture models, Usual stochastic order, Proportional odds model.

1 Introduction

In real life, one can hardly found homogeneous populations. In most areas, including the lifetime,
the distribution of the lifetime populations is not homogeneous, and usually consist of a differ-
ent number of homogeneous sub-populations. For example when components are mixed with two
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different product lines due to different work shifts, different raw materials, different manpower,
etc. Obviously, due to the mentioned diversity in the production line, the lifetime distribution of
components of one production line is different from another production line and when mixed, they
will lead to heterogeneous populations. Ignoring the heterogeneity can lead to fundamental errors
in reliability analysis. A new flexible family of distributions, called the α-mixture model proposed
by [1], is usually an effective tool for modeling heterogeneity in populations, and includes many
existing mixture models as special cases.
This short communications provides sufficient conditions for comparing two finite α-mixtures of
survival (cumulative distribution) functions with the baseline distribution functions following the
PO model in the sense of usual stochastic order when both the mixing proportions and the PO
parameters of the first α-mixture majorize the mixing proportions and the PO parameters of the
second one. The rest of the paper is organized as follows. In Section 2, the definition of the α-
mixture model, proportional odds model and some basic definitions and lemmas are reviewed.
Section 3, is devoted to the usual stochastic order of α-mixtures.

2 Preliminaries

Consider two random variables X and Y with SF’s F̄ and Ḡ, respectively.

Definition 2.1. The random variable X is said to be smaller than Y in the usual stochastic order
if F̄ (x) ≤ Ḡ(x) for all x, or equivalently E[ϕ(X)] ≤ E[ϕ(Y )] for all increasing functions ϕ for which
the expectations exist, and denoted by X ≤st Y .

Definition 2.2. (Marshall et al. [2]). Let a(1) ≤ · · · ≤ a(n) and b(1) ≤ · · · ≤ b(n) denote the
increasing arrangements of a = (a1, . . . , an) and b = (b1, . . . , bn), respectively.

(i) If
∑i

j=1 a(j) ≤
∑i

j=1 b(j) for i = 1, . . . , n − 1, and
∑n

j=1 a(j) =
∑n

j=1 b(j), then a is said to

majorize b and denoted by a
m
⪰ b.

(ii) If
∑i

j=1 a(j) ≤
∑i

j=1 b(j) for i = 1, . . . , n, then a is said to weakly supermajorize b, and

denoted by a
w
⪰ b.

(iii) If
∑n

j=i a(j) ≥
∑n

j=i b(j) for i = 1, . . . , n, then a is said to weakly submajorize b, denoted by
a ⪰w b.

Definition 2.3. (Marshall et al. [2]). Consider a real-valued function ϕ defined on a set A ⊆ Rn.
If a

m
⪰ b implies ϕ(a) ≥ (≤)ϕ(b) for any a, b ∈ A, then ϕ is Schur-convex (Schur-concave) on A .

Characterizations of Schur-convex (Schur-concave) functions are provided in the next lemma.

Lemma 2.4. (Marshall et al. [2]). Suppose that ϕ : In → R be a real-valued, continuously differ-
entiable function, where I ⊆ R is an open interval. Then, ϕ is Schur-convex (Schur-concave) on
In if and only if

(i) ϕ is symmetric on In, and

(ii) for all i ̸= j and all x ∈ In,

(ai − aj)
(
∂ϕ

∂ai
(a)− ∂ϕ

∂aj
(a)

)
≥ (≤)0,

where ∂ϕ
∂ai

is the partial derivative of ϕ with respect to its i-th argument.
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Lemma 2.5. (Marshall et al. [2]). Let ϕ be a real-valued function defined on a set A ⊆ Rn. Then,

(i) ϕ is increasing and Schur-convex on A if and only if a⪰wb implies ϕ(a) ≥ ϕ(b);

(ii) ϕ is decreasing and Schur-convex on A if and only if a
w
⪰ b implies ϕ(a) ≥ ϕ(b).

Before giving the main results of the paper, we need the following notation:

Sn = {(a, b) : ai, bi ≤ 0 (ai − aj)(bi − bj) ≤ 0, i, j = 1, . . . , n}.

2.1 Proportional odds model

The proportional odds (PO) model, that proposed by Bennett [2], is a very important semi-
parametric model in reliability theory and survival analysis. A random variable T |λ is said to
follow a PO model if its SF is expressed as

F̄ (t|λ) = λF̄ (t)

1− λ̄F̄ (t)
,

where λ > 0 is a constant, and F̄ (t) is the baseline SF. In this case the hazard rate function of T
is

r(t|λ) = r(t)

1− λ̄F̄ (t)
,

where r(t) is the baseline hazard rate. Note that the odds function of random variable T |λ, denoted
by τ(t|λ), is τ(t|λ) = λτ(t), where τ(t) is the baseline odds. Similarly the CDF of T |λ is

F (t|λ) = F (t)

1− λ̄F̄ (t)
,

where F (t) is the baseline CDF.

2.2 Finite α-Mixture

Following [1] the finite α-mixture of SF’s for n homogeneous subpopulations with SF’s F̄i, i =
1, 2, .., n, is

F̄α(t) =

{ [∑n
i=1 piF̄

α
i (t)

]1/α
, α ̸= 0,

F̄gm(t) =
∏n
i=1 F̄

pi
i (t), α = 0,

(1)

where F̄gm(t) = limα→0 F̄α(t) is the geometric mean of SF’s F̄i, and pi ≥ 0, i = 1, . . . , n, is the
mixing proportion such that

∑n
i=1 pi = 1.

If we denote by rα(t) and ri(t) the hazard rate of the finite α-mixture of SF’s and hazard rate of
the i-th subpopulation, respectively, then

rα(t) =

n∑
i=1

ri(t)pi(t), (2)
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where pi(t) =
piF̄

α
i (t)∑n

i=1 piF̄
α
i (t)

. In particular, for the finite α-mixture of SF’s (1), the hazard rate of

the geometric mixture, denoted by rgm(t) can be expressed as:

rgm(t) =

n∑
i=1

piri(t).

For some reliability interpretations of the finite α-mixture of SF’s for different values of α, interested
readers may refer to [4] and [5].

Similarly, the finite α-mixture of CDF’s for n homogeneous subpopulations with CDF’s Fi, i =
1, 2, .., n, can be defined as

Fα(t) =

{
[
∑n

i=1 piFi
α(t)]1/α , α ̸= 0,

Fgm(t) =
∏n
i=1 F

pi
i (t), α = 0,

(3)

where Fgm(t) = limα→0 Fα(t).

3 Main results

This section compares the reliability functions of two finite α-mixtures of SF’s (CDF’s) with the
baseline SF’s (CDF’s) following the PO model in the sense of usual stochastic order when both
the mixing proportions and the parameters of the first α-mixture majorize the mixing proportions
and the parameters of the second one. Since the case α→ 0, the geometric mean of SF’s (CDF’s),
provides an entirely different model, the corresponding results are presented separately.

Theorem 3.1. Suppose that Mα(p,λ, PO) and M⋆
α(q,γ, PO) are the lifetime random variables

of two n-component finite α-mixtures of SF’s with the respective proportional odds parameters
λ = (λ1, . . . , λn) and γ = (γ1, . . . , γn), and the respective mixing proportions p = (p1, . . . , pn)

and q = (q1, . . . , qn) with SF’s F̄Mα(p,λ,PO)(t) =
[∑n

i=1 pi
( λiF̄ (t)

1−λ̄iF̄ (t)

)α]1/α
and F̄M⋆

α(q,γ,PO)(t) =[∑n
i=1 qi

( γiF̄ (t)
1−γ̄iF̄ (t)

)α]1/α
, respectively. If p ⪰w q (p

w
⪰ q) and λ

w
⪰ γ, then for (p,λ) ∈ Sn and

(q,γ) ∈ Sn we have: Mα(p,λ, PO) ≤st M⋆
α(q,γ, PO) for α < 0 (α ∈ (0, 1]).

Proof. To prove the theorem, it is enough to show that F̄Mα(p,λ,PO)(t) is decreasing (increasing)
and Schur-concave with respect to λ. The partial derivative of F̄Mα(p,λ,PO)(t) with respect to λi is

∂F̄Mα(p,λ,PO)(t)

∂λi
= pi

∂F̄ (t|λi)
∂λi

F̄α−1(t|λi)

[
n∑
i=1

piF̄
α(t|λi)

] 1
α
−1

≥ 0,

where F̄ (t|λi) = λiF̄ (t)

1−λ̄iF̄ (t)
is increasing in λ. Thus, F̄Mα(p,λ,PO)(t) is increasing in λi. Now, for any

u ̸= s, u, s ∈ {1, . . . , n}

(λu − λs)
[
∂F̄Mα(p,λ,PO)(t)

∂λu
−
∂F̄Mα(p,λ,PO)(t)

∂λs

]
= (λu − λs)

[
pu
∂F̄ (t|λu)
∂λu

F̄α−1(t|λu)− ps
∂F̄ (t|λs)
∂λs

F̄α−1(t|λs)
]
.
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Now, for λu ≤ (≥)λs, F̄α−1(t|λu) ≥ (≤)F̄α−1(t|λs). Since F̄ (t|λ) is increasing and concave, we get:
∂F̄ (t|λu)
∂λu

≥ (≤)∂F̄ (t|λs)
∂λs

. On the other hand, from (p,λ) ∈ Sn, we have pu ≥ (≤)ps. Consequently,

(λu − λs)
[
∂F̄Mα(p,λ,PO)(t)

∂λu
−
∂F̄Mα(p,λ,PO)(t)

∂λs

]
≤ 0.

Thus, using Lemma 2.4, F̄Mα(p,λ,PO)(t) is Schur-concave with respect to λ. Hence, by Lemma 2.5

if λ
w
⪰ γ, then [

n∑
i=1

piF̄
α(t|λi)

]1/α
≤

[
n∑
i=1

piF̄
α(t|γi)

]1/α
. (4)

That means Mα(p,λ, PO) ≤st Mα(p,γ, PO) for α < 0 (α ∈ (0, 1]). Now, we have must to show
that Mα(p,γ, PO) ≤st Mα(q,γ, PO). Thus, we have

∂F̄Mα(p,γ,PO)(t)

∂pi
=

1

α
F̄α(t|γi)

[
n∑
i=1

piF̄
α(t|γi)

] 1
α
−1

≤ (≥)0,

for α < 0 (α ∈ (0, 1]). On the other hand,

(pu − ps)
[
∂F̄Mα(p,γ,PO)(t)

∂pu
−
∂F̄Mα(p,γ,PO)(t)

∂ps

]
sign
= (pu − ps)

[
1

α

(
F̄α(t|γu)− F̄α(t|γs)

)]
≤ 0.

Thus, F̄Mα(p,γ,PO)(t) is decreasing (increasing) and Schur-concave with respect to p for α < 0

(α ∈ (0, 1]). Hence, if p ⪰w q (p
w
⪰ q), then Lemma 2.5 yields[

n∑
i=1

piF̄
α(t|γi)

]1/α
≤

[
n∑
i=1

qiF̄
α(t|γi)

]1/α
, (5)

for α < 0 (α ∈ (0, 1]). By combining (6) and (7), we get: Mα(p,λ, PO) ≤st M⋆
α(q,γ, PO),

completing the proof of the theorem.

Theorem 3.1 gives the following upper bound for the SF of the random variable Mα(p,λ, PO).

Corollary 3.2. Set (γ1, . . . , γn) = (λ̄, . . . , λ̄), where λ̄ = 1
n

∑n
i=1 λi, and (q1, . . . , qn) = (p̄, . . . , p̄),

where p̄ = 1
n

∑n
i=1 pi. It is easy to see that λ

w
⪰ γ and p ⪰w q (p

w
⪰ q). Thus, an upper bound for

the SF of Mα(p,λ, PO) for α ∈ (−∞, 0) ∪ (0, 1) is as follows.

F̄Mα(p,λ,PO)(t) ≤ (np̄)
1
α

λ̄F̄ (t)

1− ¯̄λF̄ (t)
,

where ¯̄λ = 1− λ̄.

The following theorem compares two geometric mixtures of SF’s with PO model as baselines.
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Theorem 3.3. Suppose that G(p,λ, PO) and G⋆(q,γ, PO) are the lifetime random variables
of two n-component finite geometric mixtures of SF’s with the respective proportional odds pa-
rameters λ = (λ1, . . . , λn) and γ = (γ1, . . . , γn), and the respective mixing proportions p =

(p1, . . . , pn) and q = (q1, . . . , qn) with SF’s F̄G(p,λ,PO)(t) =
∏n
i=1

( λiF̄ (t)

1−λ̄iF̄ (t)

)pi and F̄G⋆(q,γ,PO)(t) =∏n
i=1

( γiF̄ (t)
1−γ̄iF̄ (t)

)qi, respectively. If p ⪰w q and λ
w
⪰ γ, then for (p,λ) ∈ Sn and (q,γ) ∈ Sn we

have: G(p,λ, PO) ≤st G⋆(q,γ, PO).

Proof. To prove the theorem, it is enough to show that F̄G(p,λ,PO)(t) is decreasing and Schur-
concave with respect to λ. Similar to proof of Theorem 3.1, the partial derivative of F̄G(p,λ,PO)(t)
with respect to λi is

∂F̄G(p,λ,PO)(t)

∂λi
= pi

∂F̄ (t|λi)
∂λi

F̄ (t|λi)
F̄G(p,λ,PO)(t) ≥ 0,

because F̄ (t|λi) is increasing in λ. For any u ̸= s, u, s ∈ {1, . . . , n}

(λu − λs)
[
∂F̄G(p,λ,PO)(t)

∂λu
−
∂F̄G(p,λ,PO)(t)

∂λs

]
sign
= (λu − λs)

[
pu

∂F̄ (t|λu)
∂λu

F̄ (t|λu)
− ps

∂F̄ (t|λs)
∂λs

F̄ (t|λs)

]
≤ 0.

Hence, by Lemma 2.4, F̄G(p,λ,PO)(t) is Schur-concave with respect to λ, and if λ
w
⪰ γ, then Lemma

2.5 yields
n∏
i=1

F̄ pi(t|λi) ≤
n∏
i=1

F̄ pi(t|γi). (6)

On the other hand,
∂F̄G(p,γ,PO)(t)

∂pi
= log F̄ (t|γi)F̄G(p,γ,PO)(t) ≤ 0,

and

(pu − ps)
[
∂F̄G(p,γ,PO)(t)

∂pu
−
∂F̄G(p,γ,PO)(t)

∂ps

]
≤ 0.

Thus, F̄G(p,γ,PO)(t) is decreasing and Schur-concave with respect to p. Hence, from Lemma 2.5, if
p ⪰w q, then

n∏
i=1

F̄ pi(t|γi) ≤
n∏
i=1

F̄ qi(t|γi). (7)

Consequently, from (6) and (7), one can obtain: G(p,λ, PO) ≤st G⋆(q,γ, PO).

Corollary 3.4. Set (γ1, . . . , γn) = (λ̄, . . . , λ̄), where λ̄ = 1
n

∑n
i=1 λi, and (q1, . . . , qn) = (p̄, . . . , p̄),

where p̄ = 1
n

∑n
i=1 pi. It is easy to see that λ

w
⪰ γ and p ⪰w q. Thus, an upper bound for the SF

of G(p,λ, PO) is as follows.

F̄G(p,λ,PO)(t) ≤
(

λ̄F̄ (t)

1− ¯̄λF̄ (t)

)np̄
,

where ¯̄λ = 1− λ̄.
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In the following, similar results for the finite α-mixture of CDF’s, without proofs, are provided.

Theorem 3.5. Let Wα(p,λ, PO) and W ⋆
α(q,γ, PO) be the lifetime random variables of two

n-component finite α-mixtures of CDF’s with the respective proportional odds parameters λ =
(λ1, . . . , λn) and γ = (γ1, . . . , γn), and the respective mixing proportions p = (p1, . . . , pn) and

q = (q1, . . . , qn) with CDF’s FWα(p,λ,PO)(t) =
[∑n

i=1 pi
( F (t)

1−λ̄iF̄ (t)

)α]1/α
and FW ⋆

α(q,γ,PO)(t) =[∑n
i=1 qi

( F (t)
1−γ̄iF̄ (t)

)α]1/α
respectively. If p ⪰w q and λ

w
⪰ γ, then for (p,λ) ∈ Sn and (q,γ) ∈ Sn

we have: Wα(p,λ, PO) ≤st W ⋆
α(q,γ, PO) for α ≥ 1.

Corollary 3.6. Set (γ1, . . . , γn) = (λ̄, . . . , λ̄), where λ̄ = 1
n

∑n
i=1 λi, and (q1, . . . , qn) = (p̄, . . . , p̄),

where p̄ = 1
n

∑n
i=1 pi. It is easy to see that λ

w
⪰ γ and p ⪰w q. Thus, a lower bound for the CDF

of Wα(p,λ, PO) for α ≥ 1 is as follows.

(np̄)
1
α

F (t)

1− ¯̄λF̄ (t)
≤ FWα(p,λ,PO)(t),

where ¯̄λ = 1− λ̄.

Theorem 3.7. Let Gc(p,λ, PO) and G⋆c(q,γ, PO) be the lifetime random variables of two n-
component finite geometric mixtures of CDF’s with the respective proportional odds parameters λ =
(λ1, . . . , λn) and γ = (γ1, . . . , γn), and the respective mixing proportions p = (p1, . . . , pn) and q =

(q1, . . . , qn) with CDF’s FGc(p,λ,PO)(t) =
∏n
i=1

( F (t)

1−λ̄iF̄ (t)

)pi and FG⋆c(q,γ,PO)(t) =
∏n
i=1

( F (t)
1−γ̄iF̄ (t)

)qi,
respectively. If p

w
⪰ q and λ

w
⪰ γ, then for (p,λ) ∈ Sn and (q,γ) ∈ Sn we have: Gc(p,λ, PO) ≤st

G⋆c(q,γ, PO).

Corollary 3.8. Set (γ1, . . . , γn) = (λ̄, . . . , λ̄), where λ̄ = 1
n

∑n
i=1 λi, and (q1, . . . , qn) = (p̄, . . . , p̄),

where p̄ = 1
n

∑n
i=1 pi. It is easy to see that λ

w
⪰ γ and p

w
⪰ q. Thus, an upper bound for the CDF

of Gc(p,λ, PO) is as follows.

FGc(p,λ,PO)(t) ≤
(

F (t)

1− ¯̄λF̄ (t)

)np̄
,

where ¯̄λ = 1− λ̄.

Let us consider some examples for our theoretical findings.

Example 3.9. (a) Suppose that the baseline distribution is standard Exponential distribution
with SF F̄ (t) = e−t, t ≥ 0. Set p = (p1, p2, p3) = (0.7, 0.2, 0.1), q = (q1, q2, q3) = (0.6, 0.2, 0.2),

λ = (λ1, λ2, λ3) = (0.4, 0.7, 0.8), γ = (γ1, γ2, γ3) = (0.5, 0.7, 0.9) and α = 0.5. Clearly, p
w
⪰ q,

λ
w
⪰ γ, (p,λ) ∈ S3 and (q,γ) ∈ S3. Thus, all condition of Theorem 3.1 are satisfied.

Figure 1 (a) depicts the SF’s of M0.5(p,λ, PO) and M⋆
0.5(q,γ, PO), and indicates that the

usual stochastic order is hold. Also, Figure 2 (a) Shows the SF’s of M0.5(p,λ, PO) and its
corresponding upper bound given in Corollary 3.2.

(b) Let Wα(p,λ, PO) and W ⋆
α(q,γ, PO) are two finite α-mixtures of CDF’s with the specifica-

tions given as part (a) and α = 1.5. Figure 1 (b) plots the CDF’s of W1.5(p,λ, PO) and
W ⋆

1.5(q,γ, PO), and coincides with the result of Theorem 3.5. Further, Figure 2 (b) plots the
CDF’s of W1.5(p,λ, PO) and its corresponding lower bound given in Corollary 3.6.
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(a) (b)

Figure 1: (a): F̄M0.5(p,λ,PO)(t) (solid) and F̄M⋆
0.5(q,γ,PO)(t) (dash dot); and (b): FW1.5(p,λ,PO)(t) (solid) and

FW⋆
1.5(q,γ,PO)(t) (dash dot) in Example 3.9.

(a) (b)

Figure 2: (a): F̄M0.5(p,λ,PO)(t) (solid) and the corresponding upper bound (dash dot); and (b): FW1.5(p,λ,PO)(t)
(solid) and the corresponding lower bound (dash dot) in Example 3.9.

4 Conclusions

In this paper, we have considered the PO model as a baseline distribution in the finite α-mixture
model, and have provided sufficient conditions, using the concept of majorization, to compare two
finite α-mixtures in the sense of usual stochastic order. Recently, Shojaee et al. [6] have compared
two generalized finite α-mixtures of SF’s when the baseline SF is decreasing (increasing) and convex
(concave) in the parameter for αi ≥ 0 (αi ≤ 0). The finite α-mixture is the special case of the
generalized finite α-mixture with αi = α, however, the results of the paper have obtained under
slightly different conditions.
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Abstract

Since the exact reliability of coherent systems is notoriously difficult to calculate, so
bounds can be useful in such situations. In this note, we establish an upper bound for
the reliability of coherent systems lifetime by using the system signature. An advantage
of the new bound is that it is easy to compute.

Keywords: Coherent system, System signature, Variance.

1 Introduction

It is hard to obtain the exact reliability of coherent systems via straightforward computations
in some situations. For instance, it often requires the distribution of component lifetimes as well
as the exact structure function of the system. Therefore, there have been efforts made to obtain
useful bounds for them. The problem typically consists of computing the possible upper and lower
bounds on the reliability, assuming that the lifetime distribution belongs to a common family e.g.
IFR, IFRA, NBU. Various results in this area are available in Barlow and Proschan [3]. Since
Markov’s fundamental inequality, a number of improvements have been obtained under additional
assumptions on the underlying distribution function. It states that for a nonnegative random
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variable with mean µ = E(X), and survival probability F (t) = P (X > t) it holds that F (t) ≤ µ/t
for t > µ and F (t) ≤ 1 for 0 < t ≤ µ, see e.g. Haines and Singpurwalla [1] and Marshall [2]. The
aim of this paper is to provide an upper bound based on the following lemma.

Lemma 1.1. Let X be a random variable with the cumulative distribution function (CDF) F (x).
If E(X) = 0 and E(X2) = σ2(X) <∞, then

F (t) ≤ σ2(X)

σ2(X) + t2
, t > 0.

Proof. For all b > 0, we have

P (X > t) = P (X + b > t+ b)

≤ P ((X + b)2 > (t+ b)2)

≤ E(X + b)2

(t+ b)2

=
σ2(X) + b2

(t+ b)2
.

The last inequality is obtained by using the Markov’s inequality. The minimum of the right-hand-
side of the above relation is attained when b = σ2

t , and the proof is then completed.

Based on the upper bound given in Lemma 1.1, we provide a new upper bound for the reliability
function of a coherent system by using the concept of system signature. It depends on the mean
and variance of the signature vector as well as the parent distribution function.

2 Main results

Hereafter, we provide an upper bound for the reliability function of the coherent systems. For
this purpose, let us consider an increasing nonnegative differentiable function ψ(x) such that
ψ′(x) = ϕ(x) ≥ 0. Applying Lemma 1.1, we obtain the following theorem.

Theorem 2.1. Let X be a lifetime with CDF F (x), and with µψ = E[ψ(X)] <∞ and ψ(t) being
an increasing function of t. Then,

F (t) ≤

{
σ2
ψ(X)

σ2
ψ(X)+(ψ(t)−µψ)2

, ψ(t) > µψ

1, ψ(t) ≤ µψ
(1)

where σ2ψ(X) = σ2(ψ(X)).

Proof. Since ψ(·) is an increasing function, we have

P (X > t) = P (ψ(X) > ψ(t))

= P (ψ(X)− µψ > ψ(t)− µψ)
≤ P (Z2

ψ > (ψ(t)− µψ)2)

≤
σ2ψ(X)

σ2ψ(X) + (ψ(t)− µψ)2
, ψ(t) > µψ.

The required inequality is obtained by noting that Zψ = ψ(X)− µψ has E(Zψ) = 0 and E(Z2
ψ) =

σ2ψ(X), and then using Lemma 1.1. Hence, the theorem.
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In particular, if we take ψ(t) = t, we simply have µ = E[X]. Then, we deduce the bound

F (t) ≤

{
σ2(X)

σ2(X)+(t−µ)2 , t > µ

1, t ≤ µ
(2)

A system is said to be coherent if it does not have any irrelevant components and its structure-
function is monotone. A special case of coherent systems is the k-out-of-n system, where the system
fails when the k-th component failure occurs. Let T denote the lifetime of a mixed system consisting
of n independent and identically distributed (i.i.d.) components with lifetimes X1, . . . , Xn having
an absolutely continuous CDF F . Denote by X1:n, . . . , Xn:n the ordered lifetimes corresponding to
X1, . . . , Xn (i.e. the lifetimes of k-out-of-n systems). It is well known that the survival function of
a coherent system F T satisfies (see, e.g., Samaniego [4])

F T (t) = P (T > t) =

n∑
i=1

siF i:n(t), (3)

where F i:n(t) =
∑i−1

j=0

(
n
j

)
[F (t)]j [F (t)]n−j for i = 1, . . . , n, are the survival functions ofXi:n ordered

component lifetimes. The vector of coefficients s = (s1, . . . , sn) in (3) is called system signature in
the literature. Notice that s1, . . . , sn are nonnegative real numbers which do not depend on the
common CDF F and such that

∑n
i=1 si = 1. One can see that the survival function of a coherent

system is a mixture of the survival functions of the i-out-of-n systems with weights si. In the
following theorem, we have obtained an upper bound for the reliability of coherent systems in
terms of the system signature and the parent distribution function of a component lifetime.

Theorem 2.2. Let T be the lifetime of a coherent system with known signature s consisting of n
i.i.d. component lifetimes X1, . . . , Xn having common CDF F (x) and PDF f(x). Then,

F T (t) ≤


(n+1)(σ2(s)+E(s))−(E(s))2

(n+1)(σ2(s)+E(s))−(E(s))2+(n+2)[(n+1)F (t)−E(s)]2 , t > F−1
(
E(s)
n+1

)
1, t ≤ F−1

(
E(s)
n+1

) (4)

where E(s) and σ2(s) denote the mean and variance of the system signature, respectively, and
F−1(u) = inf{x;F (x) ≥ u}, 0 < u < 1 is the quantile function of cdf F (x).

Proof. By setting ψ(t) = F (t) so that ϕ(t) = f(t) and then using Theorem 2.1, we get

F T (t) ≤


σ2(V )

σ2(V )+(F (t)−E(V ))2
, t > F−1

(
E(s)
n+1

)
1, t ≤ F−1

(
E(s)
n+1

) (5)

It is now easy to see that

(n+ 1)2(n+ 2)σ2(V ) = (n+ 1)
(
σ2(s) + E(s)

)
− (E(s))2 ,

using which the required result follows.

It can be seen that the upper bound in Theorem 2.2 depends on the mean and variance of the
number of components that have failed at the time of system failure and the component lifetime
distribution. It is clear that the given bounds are easy to compute for any coherent system. The
following example provides an illustration.
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1

3

4

2 5

Figure 1: The bridge system with signature s = (0, 0.2, 0.6, 0.2, 0).

Example 2.3. Let us consider the bridge system shown in Figure 1. It is known that the signature
of this system is s = (0, 0.2, 0.6, 0.2, 0). Let us assume that lifetimes of the component coming from
the Weibull model with the CDF

F (t) = 1− e−tα , t > 0, α > 0.

In this case, we have F−1(0.5) = α
√
0.69314, and so the upper bound from Theorem 2.2 is

F T (t) ≤

{
11.40

32.40−42e−tα
, t > α

√
0.69314

1, t ≤ α
√
0.69314

(6)

Moreover, the general upper bound from (2) is

F T (t) ≤

{
σ2(T )

σ2(T )+(t−E(T ))2 , t > E(T )
1, t ≤ E(T )

(7)

Values of these two bounds, for various α, are plotted in Fig. 2. We observe that for all values of
α, the upper bound given in (6) is suitable for the initial values however, when the time increases,
the upper bound (7) is better.

Figure 2: The upper bound given in (7) bound (dashed line) and the new upper bound (dotted
line) as well as the exact reliability function of a bridge system (solid line) for the case of
Weibull distribution with the shape parameter α.

An immediate consequence of Theorem 2.2 is as follows.
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Theorem 2.4. If Xk:n denotes the lifetime of a k-out-of-n system consisting of n I.I.D. component
lifetimes X1, . . . , Xn having common CDF F (x) and PDF f(x), then we have

F k:n(t) ≤


(n+1)k−k2

(n+1)k−k2−(n+2)[(n+1)F (t)−k]2 , t > F−1
(

k
n+1

)
1, t ≤ F−1

(
k

n+1

) (8)

3 Conclusion

Reliability analysis is a crucial aspect of engineering design, where the ability of a system or
component to perform its intended function over time is a critical factor in ensuring safety and
efficiency. In this paper, we propose a novel method for obtaining upper bounds for the reliability
of a random lifetime, which offers significant advantages over existing approaches. Our method
produces algebraic inequalities that are more practical and easier to estimate from data than those
based on upper tail moments. The given bound provides a powerful tool for assessing the reliability
of complex systems with diverse components and failure modes.
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Abstract

In this paper, we propose the quantile based dynamic cumulative extropy in residual
lifetime. Various characterizations are obtained based on the lifetime distributions and
quantile-based reliability measures function. We introduce a new stochastic order based
on the quantiles that is built on this measure. Also, some properties of the quantile
based dynamic cumulative extropy is studied.

Keywords: Characterization, Quantile Function, Residual Extropy, Stochastic
Orders, Survival Extropy.

1 Introduction

The extropy measure studied here to give a quantified measure of uncertainty involved in a ran-
dom variable has become a widely used measure. Various areas such as actuarial sciences, survival
analysis and reliability analysis have been profiting this measure through many applications. Ex-
tropy of a non-negative random variable X which is absolutely continuous and has the probability
density function (pdf) fX(x) is defined by [6] as a complement dual of Shannon entropy. This is a
measure of uncertainty related to the outside ([1]) and is defined as

J(X) = −1

2

∫ ∞

0
f2X(x)dx = −1

2
E
(
fX(X)

)
, (1)

1fyousefzadeh@birjand.ac.ir
2a-pakgohar@pnu.ac.ir
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where E denotes the expected value operator.
Since we can not use J(X) in the context of a random variable which has already survived for a
period of time, [12] suggested the measure of residual extropy, which is defined as

J(X; t) = −1

2

∫ ∞

t

f2X(x)

F̄ 2
X(t)

dx, (2)

in which, fX(x) and F̄X(x) respectively are pdf and survival functions of the random variable X.
Many interesting properties of extropy have been found by scholars. For instance, [11], [3], [14],
[16] studies and etc.
In this direction, [2] and [16] explored an expression of the cumulative extropy as

Js(X) = −1

2

∫ ∞

0
F̄ 2
X(x)dx. (3)

A probability distribution function can be specified in two ways; as a distribution function or as a
quantile function. The quantile function of random variable X would be defined as

QX(p) = F−1
X (p) = inf{x : FX(x) ≥ p}, 0 ≤ p ≤ 1. (4)

Equivalently, FX(QX(p)) = p, that implies fX(QX(p))qX(p) = 1, where fX(QX(p)) and qX(p) =
d
dpQX(p) respectively denote the density quantile function and quantile density function (qdf)
([10]).
The hazard rate hX(x) or its equivalent the hazard quantile function (hqf) are the primary concepts
to present the physical properties of failure patterns (see [7]) defined as

HX(p) = hX(QX(p)) =
fX(QX(p))

F̄X(QX(p))
=

1

(1− p)qX(p)
. (5)

The hqf can be interpreted as the explanation of the conditional probability of a case of failure
within the next small time interval if we have the survival until 100(1− u)% point of distribution.
We also can determine the quantile function by the hqf as

QX(p) =

∫ p

0

du

(1− u)HX(u)
, p ∈ (0, 1). (6)

Corresponding to [7] we would have mean residual quantile function (mrqf) as

MX(p) =
1

1− p

∫ 1

p

(
QX(u)−QX(p)

)
du (7)

=
1

1− p

∫ 1

p

du

HX(u)
, ∀p ∈ (0, 1). (8)

Similar to [5] the mrqf also uniquely determines the quantile function by

QX(p) =

∫ p

0

MX(u)

1− u
du−MX(p)−MX(0), p ∈ (0, 1). (9)

Equivalently

qX(p) =
MX(p)

(1− p)
−M ′

X(p), (10)

where M
′
X(p) =

d
dpMX(p).

The rest of this article is structured as follows. Section 2, we provide some properties and char-
acterizations of the quantile-based dynamic cumulative extropy in residual lifetime (QDCEXR).
Section 3, includes discussion and our conclusions.
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2 Main results

The length of study time has been considered as a main variable of interest in many fields of
statistical studies such as reliability, survival analysis, economic, business etc. For example see the
recently study by [9]. The information measures in such cases are time-dependent, thus they are
dynamic.
The concept of extropy in statistical applications is usually applied to score the forecasting distri-
butions based on the total log scoring method. For example, under the total log scoring rule, the
negative sum of the entropy and extropy equals the expected score of a forecasting distribution
[2, 4]. Inspired by the dynamic cumulative entropy and considering a parallel (series) system with
independent and identical components with lifetimes X1, ..., Xn with common cdf has been studied
by various researchers. For example we can refer to [2, 8, 16].
In this section, we propose the dynamic cumulative extropy residual lifetime.
The dynamic cumulative version of J(X) for residual lifetime t is given by

Js(X, t) = −
1

2

∫ ∞

t

F̄ 2(x)

F̄ 2(t)
dx, x ≥ 0. (11)

Then the quantile-based dynamic cumulative residual extropy becomes

Js(X, p) = −
1

2

∫ 1

p

(1− u)2

(1− p)2
qX(u)du, 0 < p < 1. (12)

Differentiating both sides of (12) with respect to p, we get

qX(p) = −
4Js(X, p)

1− p
+ 2J

′
s(X, p), (13)

where J
′
s(X, p) =

d
dpJs(X, p). Then Js(X, p) uniquely determines the distribution function.

In term of hqf Js(X, p) reduces to

Js(X, p) = −
1

2

∫ 1

p

(1− u)
(1− p)2

1

HX(u)
du, (14)

Also, Js(X, p) can be expressed in term of the mrqf

Js(X, p) = −
1

2
MX(p) +

1

2(1− p)2

∫ 1

p
(1− u)MX(u)du, (15)

Theorem 2.1. The following relations are established

a) Js(X, p) =
−k

2(1− p)2
B̄(p, γ + 1, 3− (A+ γ)),

b) Js(X, p) =
−k

2(1− p)2
Γ̄(p, γ + 1, 3−A).

if and only if

a) qX(u) = kuγ(1− u)−(A+γ), k > 0,

b) qX(u) = k(1− u)−A
(
− ln(1− u)

)−γ
. (16)

where A and γ are real constants.
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Proof. a) We have

Js(X, p) =
−k

2(1− p)2

∫ 1

p
uγ(1− u)2−(A+γ)du =

−k
2(1− p)2

B̄
(
p, γ + 1, 3− (A+ γ)

)
.

b) We have

Js(X, p) =
−k

2(1− p)2

∫ ∞

− ln(1−p)
e−(3−A)zzγdz

=
−k

2(1− p)2
Γ̄
(
− ln(1− p), γ + 1, 3−A

)
.

Figure 1 gives the graphs of Js(X, p) for k = 2, A = 0, 1 and γ = −2,−1, 0, 1, (1.5, 2) respectively.
Note that Js(X, p) is non-decreasing for γ < 0, constant for γ = 0, non-increasing for γ > 0.
Similarly, Figure 2 shows the graphs of Js(X, p) for k = 2, A = 0, 1 and γ = −2,−1, 0, 1, 2. It is

Figure 1: Graphs of Js(X, p) for A = 0 , γ = −2,−1, 0, 1, 2 (Left panel), and A = 1 ,
γ = −2,−1, 0, 1, 1.5 (Right panel), in Theorem 2.1 (a).

shown that Js(X, p) is non-decreasing , constant for γ = 0 and non-increasing for γ < 0, γ = 0
and γ > 0 respectively.

Remark 2.2. There are some important distribution functions within the family of distributions
such as exponential (γ = 0, A = a

a+1 + 1), Power(γ = 1
β − 1, A = 0), Govindarajulu (β − 1, A =

−1). Similarly (16) contains several well known distributions which include Weibull distribution
(A = 1, γ = 1

a − 1), Pareto (A > 1, γ = 0) and rescaled Beta (A < 1, γ = 0).
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Figure 2: Graphs of Js(X, p) for A = 0 (Left panel), and A = 1 (Right panel) and γ =
−2,−1, 0, 1, 2 in Theorem 2.1 (b).

Table 1 represents the quantile function and cumulative residual extropy for some distributions.

Table 1. Quantile function and cumulative residual extropy for some distributions

Distribution Q(p) Js(X, p)

Exponential − log(1−p)
λ − 1

4λ

Pareto II γ
(
(1− p)

−1
c − 1

)
− γ

2(2c−1)(1− p)
− 1
c

Rescaled Beta R
(
1− (1− p)

1
c

) −R
2(1+2c)(1− p)

1
c

Generalized Pareto b
a [(1− p)

−a
a+1 − 1] − b

2(a+2)(1− p)
− a
a+1

Power γp
1
β −γ

2(1−p)2
[ 2β2

(1+β)(2β+1) − p
1
β
(
1 + p2

2β+1 −
2p
1+β

)]
Uniform a+ (b− a)p − (b−a)(1−p)

6

Davis cpλ1

(1−p)λ2
−c

2(1−p)2
[
λ1B̄(p, λ1, 3− λ2) + λ2B̄(p, 1 + λ1, 2− λ2)

]
Skew Lambda γpλ − (1− p)λ −λ

2(1−p)2
[
γB̄(p, λ, 3) + B̄(p, 1, 2 + λ)

]
Weibull (− ln(1−p)

λ )c −2c
λ(1−p)2 Γ̄(p, 1 + c, 2)

Govindarajulu γ
(
(β + 1)pβ − βpβ+1

)
−γβ(β+1)

2(1−p)2
[
B̄(p, β, 3)− B̄(p, β + 1, 3)

]
Identifying different classes of probability models in terms of monotonous behaviors of the uncer-
tainty measures would by usually useful. Hence, we define the following non-parametric classes
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based on Js(X, p).

Definition 2.3. X is said to have increasing(decreasing) quantile dynamic cumulative extropy
in residual lifetime which are abbreviated as IQDCEXR (DQDCEXR) if Js(X, p) is increasing
(decreasing) in p.

Now, we can find from the relation (13) that if X is IQDCEXR (DQDCEXR), then Js(X, p) ≥
(≤)−qX(p)(1−p)

4 . It follows that if X is IQDCEXR (DQDCEXR), then Js(X, p) ≥ (≤) − 1
4HX(p) .

Note that for the exponential distribution, Js(X, p) = − 1
4HX(p) . Thus exponential distribution is

the boundary of IQDCEXR and DQDCEXR classes.

Theorem 2.4. Let X be IQDCEXR (DQDCEXR), then Js(X, p) ≥ (≤)− 1
4HX(p) , which provide

upper (lower) bounds for Js(X, p) with respect to IQDCEXR (DQDCEXR).

Proof. Differentiating Js(X, p) in (14) with respect to p we can obtain

J
′
s(X, p) =

1

2

1

(1− p)HX(p)
+

2Js(X, p)

1− p
.

Since X is IQDCEXR (DQDCEXR) we would have Js(X, p) ≥ (≤)− 1
4HX(p) .

Theorem 2.5. Js(X, p) = c is a constant if and only if X be a random variable with exponential
distribution.

Proof. Assume that Js(X, p) = c. Using (13) we obtain QX(p) = 4c ln(1 − p) = − ln(1−p)
λ , where

λ = −1
4c .

On the opposite side, suppose that X follows exponential distribution with quantile function
QX(p) = − ln(1−p)

λ . Now from (12) we have Js(X, p) =
−1
4λ = c is a constant.

Theorem 2.6. If X is continuous random variable with FX(x) and fX(x) as the cdf and pdf re-
spectively and with IQDCEXR property, also ϕ(.) is a non-negative increasing and convex function,
then ϕ(X) is IQDCEXR.

Proof. Let Y = ϕ(X) with cdf and pdf GY (y) and gY (y) respectively. Then

gY (y) =
fX(ϕ

−1(y))

ϕ′(ϕ−1(y))
=

1

ϕ′(QX(u))qX(u)

.
Furthermore,

Js(Y, p) = −
1

2

∫ 1

p

(1− u)2

(1− p)2
qY (u)du

= −1

2

∫ 1

p

(1− u)2

(1− p)2
(
ϕ

′
(QX(u))± 1

)
qX(u)du

= Js(X, p) +
1

2

∫ 1

p

(1− u)2

(1− p)2
(
1− ϕ′

(QX(u))
)
qX(u)du.
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Since ϕ is a convex, ϕ
′
(QX(p)) < ϕ

′
(QX(u)), 0 < p < u < 1, that yields

Js(Y, p) < Js(X, p) +
1

2

(
1− ϕ′

(QX(p))
)

(1− p)2

∫ 1

p
(1− u)2qX(u)du

= Js(X, p)− Js(X, p)
(
1− ϕ′

(QX(p))
)

= Js(X, p)ϕ
′
(QX(p)),

which complete the proof.

Example 2.7. Let X has rescaled beta distribution with QX(u) = R
(
1 − (1 − u)

1
c

)
when Y =

Xβ, β > 0, with quantile function QY (u) = Rβ
(
1− (1− u)

1
c

)β
. therefore, using the above if X

is IQDCEXR then Y is also IQDCEXR.

Theorem 2.8. Let X be a non-negative absolutely continuous random variable with Js(X, p) =
c.MX(p). Then

QX(p) = k
c

2c+ 0.5

(
1− (1− p)

−c
2c+0.5

)
.

Proof. From (15) we would have

M ′
X(p) =MX(p)

2c+ 0.5

(1− p)(c+ .5)
,

which on simplification resolve to MX(p) = k(1 − p)−
2c+0.5
c+.5 and substituting it in (9), we obtain

the result.

Based on Theorem 2.8, we show that the power function distribution can be characterized using
Js(X, p).

Remark 2.9. Let X be a non-negative continuous random variable with the quantile function Q(.)
and mean residual quantile function M(.). Then

Js(X, p) = −
1

2

β + 1

2β + 1
MX(p),

if and only if X has power function distribution.

Theorem 2.10. Let X be a non-negative continuous random variable such that
Js(X, p) = − c(p)

2 MX(p) then

MX(p) =
e

∫ p
0

du

(1−u)
(
c(u)−1

)
(1− p)2

(
c(p)− 1

) . (17)

Proof. Assuming the condition Js(X, p) = − c(p)
2 MX(p) and taking the definition (12) yields∫ 1

p

(1− u)2

(1− p)2
q(u)du = c(p)MX(p). (18)

Differentiating with respect to p we obtain

(1− p)2q(p) = 2(1− p)c(p)MX(p)− c
′
(p)MX(p)(1− p)2−(1− p)2c(p)M

′
X(p). (19)
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So from (6) we can write

MX(p)
(
2c(p)− 1− (1− p)c′(p)

)
=M

′
X(p)(1− p)

(
c(p)− 1

)
. (20)

On solving the first order differential equation in MX(p) we get (17).

Generally, various stochastic orders could be implemented for comparison of two random variables.
We now consider the hazard quantile function order to compare two random variables based on
Js(X, p) .

Definition 2.11. X is said to be smaller than Y in QDCEXR ( X
QDCEXR
≤ Y ) if Js(X, p) ≤

Js(Y, p), ∀p ∈ (0, 1).

Theorem 2.12. Let X
HQ
≤ Y , then X

QDCEXR
≥ Y .

Proof. Assuming X
HQ
≤ Y implies (1− p)qX(p) ≤ (1− p)qY (p). So, in glimpse, from (12) it yields

Js(X, p) ≥ Js(Y, p).

Theorem 2.13. Let X and Y be two random variables such that X
QDCEXR
≤ Y . Then for a

non-negative convex function ϕ(.), ϕ(X)
QDCEXR
≥ ϕ(Y ).

Proof. It is enough to show that∫ 1

p

(1− u)2ϕ′(
QX(u)

)
qX(u)

(1− p)2
du ≤

∫ 1

p

(1− u)2ϕ′(
QY (u)

)
qY (u)

(1− p)2
du.

Since X
QDCEXR
≤ Y we have Js(X, p) ≤ Js(Y, p), which is equivalent to∫ 1

p
(1− u)2qX(u)du ≥

∫ 1

p
(1− u)2qY (u)du.

Thus the function is increasing in p, qX(p) ≤ qY (p). Since ϕ is convex function: ϕ
′
(QX(u)

)
≤

ϕ
′
(QY (u)

)
. Hence we would have ϕ(X)

QDCEXR
≥ ϕ(Y ).

We express some of the relationships in the following theorems. Note that
Disp
≤ ,

HR
≤ and

St
≤ denote the

dispersive, the hazard rate and the usual stochastic orders respectively. For compare comprehensive
discussion on various consents of stochastic ordering based on reliability measures, see [13].

Theorem 2.14. If X
MQ
≤ Y then X

QDCEXR
≥ Y .

Proof. It is obvious that, X
MQ
≤ Y , thus X

HQ
≤ Y , So Theorem 2.12 completes the proof.

Lemma 2.15. For two continuous non-negative random variable X and Y ,

• X
Disp
≤ Y ⇔ X

HQ
≤ Y

• If X or Y is decreasing (increasing) hazard rate, then X
HR
≤ Y ⇒ (⇐)X

HQ
≤ Y
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• If X and Y have the same lower end of support and if QY (p)
QX(p) is increasing in p ∈ (0, 1) then

X
St
≤ Y ⇒ X

HQ
≤ Y

Theorem 2.16. Let X and Y be two non-negative random variables having continuous quantile
density function qX(p) and qY (p) and quantile functions QX(p) and QY (p) respectively. then

• If X
Disp
≤ Y , then X

QDCEXR
≥ Y .

• If X or Y is DHR, then if X
HR
≤ Y, then X

QDCEXR
≥ Y .

• If X and Y have the same lower end of the support and if QY (p)
QX(p) is increasing in p ∈ (0, 1),

then if X
St
≤ Y , yields X

QDCEXR
≥ Y .

Proof. Using Lemma 2.15 and Theorem 2.12 the proof is complete.

3 Conclusion

This study has introduced quantile-based in cumulative residual extropy. It is shown that the
quantile-based cumulative extropy in residual lifetime determine the distribution through an ex-
plicit expression in a unique way. We also investigated some characteristics and properties of these
quantile-based measures in the context of the important the quantile-based survival functions such
as hazard and mean residual functions. Also some characterizes on stochastic orders included the
quantile form of usual, hazard rate and dispersion rate orders, besides, proposed some quantile-
based orders on residual quantile cumulative extropy have studied.
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An optimal selection problem in a k-out-of-n system

with dependent components
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Abstract

One of the methods to improve the reliability of a system is redundancy allocation.
In this paper, we aim to examine the redundancy allocation in a k-out-of-n system with
dependent and heterogeneous components. Some examples are provided to illustrate
the optimal allocation based on criteria of the usual stochastic order and the mean
residual lifetime of the system.

Keywords: Reliability, Active redundancy, Copula function.

1 Introduction

The redundancy problem is one of the most important issues in reliability engineering to increase
the reliability of systems. There are two types of redundancy: active, and cold-standby redundancy.
In the active mode, the redundant component works with other components of the system while
in the cold standby, the spare starts working as soon as the corresponding component fails. It is
important to indicate the spares are allocated to which components of the system such that system
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reliability is maximized. Many researchers have studied the redundancy allocation problem (RAP)
for systems with independent components; see e.g., [3, 10, 11, 8]. Boland et al. [3] showed that
based on stochastic ordering for a k-out-of-n system having independent components, a redundant
component should be allocated to the weakest component. Ding and Li [5] explored the allocation
problem of active redundancies to a k-out-of-n system with i.i.d. components based on the hazard
rate order. In [1], the RAP in a k-out-of-n system was considered under the assumption that both
types of active and standby redundant components are used in the system. Zhang [13] explored,
by using stochastic orders, the optimal allocation of active redundancies to a weighted k-out-of-n
system with independent components.

In the aforementioned works, the lifetimes of system components are assumed to be independent.
There are a few studies on the RAP of systems with dependent components. In [6], the redundancy
allocation was studied for the series systems with dependent component lifetimes and one active
(or, cold standby) redundant component. This work was extended to the case where two spares
are applied; see, [7]. For more studies, one can refer to [12, 4, 2]. In this paper, we investigate the
problem of allocation of one active redundant component for a k-out-of-n system having dependent
components. The problem is also examined for two redundant components. The proofs of theorems
are omitted because of restrictions in page numbers.

2 Main results

Consider a k-out-of-n system with dependent components. It is assumed that there is one spare
component for the system. The lifetimes of components and spare can be dependent and follow
arbitrary distribution functions (DFs). Let X1, . . . , Xn denote the lifetimes of components with
DFs F1, . . . , Fn. Then, the total of active components at time t is B(t) =

∑n
i=1 I(Xi > t), and the

lifetime of the system is defined as

T := inf{t : B(t) < k}.

Then, the reliability function of the system is obtained by

P (T > t) = P (B(t) ≥ k).

Under these conditions, we want to explore that the active spare component must be allocated to
what component to optimize reliability. Before that, we present the definition of usual stochastic
order [9].

Definition 2.1. For two non-negative random variables (r.v.s) X and Y with survival functions
F̄X and F̄Y , X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y , if
F̄X(t) ≤ F̄Y (t) for all t ≥ 0.

Let Y denote the lifetime of active redundant component with DF G. Suppose that Ti, and Tj
denote the system lifetimes if the redundant component is allocated to the component i and j,
respectively. The considered criterion is that if Ti ≥st Tj , then the component i is preferred to the
component j for the redundant component allocation.

Theorem 2.2. Suppose that Y,X1, . . . , Xn are dependent r.v.s. Then, Ti ≥st Tj if and only if for
all t ≥ 0

αi(t) ≤ αj(t), (1)
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where

αi(t) = P (B−(i,j)(t) ≥ k − 2, Xi > t, Y > t)− P (B−(i,j)(t) ≥ k − 1, Xi > t, Y > t),

αj(t) = P (B−(i,j)(t) ≥ k − 2, Xj > t, Y > t)− P (B−(i,j)(t) ≥ k − 1, Xj > t, Y > t),

in which B−(i,j)(t) =

n∑
ℓ=1

ℓ/∈{i,j}

I(Xℓ > t).

In the following, we present an example for applying Theorem 2.2. First, it is reminded that
H̃ : [0, 1]d → [0, 1] is a d-dimensional copula if it is a joint DF of a d-dimensional random vector
with uniform marginal distributions. If H denotes the joint DF of r.v.s X1, . . . , Xd with marginal
DFs F1, . . . , Fd, respectively, based on the copula function H̃, we can write

H(x1, . . . , xd) = H̃(F1(x1), . . . , Fd(xd)).

Example 2.3. Consider a 2-out-of-3 system. Assume that the joint DF of (X1, X2, X3, Y ) is
given, based on the Clayton copula function, as follows

H(x1, x2, x3, y) = (

3∑
i=1

F−θ
i (xi) +G−θ(y)− 3)−1/θ,

where y ≥ 0, xi ≥ 0, i = 1, . . . , 3 and θ = 0.5. Suppose that

F1(t) = 1− exp(−t), F2(t) = 1− (1 + t)−1/3, F3(t) = 1− (1 + t)−1,

G(t) = 1− exp(−t0.5).

The marginal DFs ofX1, X2, X3 and Y are plotted in Figure 1. It shows thatX1 ≤st X3 ≤st X2 and
Figure 2 shows that when the spare is allocated to the weakest component, the system reliability
is in the optimal situation.

Figure 1: The plot of marginal DFs of main and redundant components.
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Figure 2: The plot of reliability functions of Ti, i = 1, 2, 3.

It is remarkable that in relation (1) the dependency between Xi and Xj has no role. The following
proposition achieves a simplification of the condition in Theorem 2.2 for the case when the spare
lifetime is independent of components lifetime.

Proposition 2.4. Suppose that the lifetime of spare Y is independent of the lifetimes of main
components of system. Then Ti ≥st Tj if and only if for all t ≥ 0,

α∗
i (t) ≤ α∗

j (t), (2)

where

α∗
i (t) = P (B−(i,j)(t) ≥ k − 2, Xi > t)− P (B−(i,j)(t) ≥ k − 1, Xi > t),

α∗
j (t) = P (B−(i,j)(t) ≥ k − 2, Xj > t)− P (B−(i,j)(t) ≥ k − 1, Xj > t).

The mean residual lifetime (MRL) is a well-known function in the reliability context. The MRL
function quantifies the expected remaining life of system when we know it has survived to a certain
time point x. Then, for a lifetime variable X with finite expectation, the MRL at time x is defined
as mX(x) := E(X − x|X > x). It is obvious that mX(0) is equal to the mean of X. For two
non-negative r.v.s X, and Y , X is said to be less than Y in MRL concept (denoted by X ≤mrlY)
if and only if mX(x) ≤ mY (x) for all x ≥ 0. It should be noted neither of the orders ≤st and ≤mrl
implies the other; counterexamples can be found in the literature [9].

Based on the concept of MRL, it seems that the MRL can be a suitable concept to indicate the
optimal selection in RAP. Thus, we derived an algorithm for the problem gotten the amounts of
MRL of a k-out-of-n system under the described conditions of this paper. This algorithm is not
given in the paper because of restrictions in the page number. In the following, we explore this
problem as an example.

Example 2.5. Consider a 3-out-of-4 system. Let the marginal DFs of X1, . . . , X4 and Y be
F1(t) = 1 − exp(−t2/3), F2(t) = 1 − exp(−t1/2), F3(t) = 1 − (1 + t)−1, F4(t) = 1 − exp(−t3) and
G(t) = 1 − exp(−t1/5), respectively. In Table 1, using simulation, we compute the MRL of Ti,
i = 1, . . . , 4 with age x = 0.8487657 when Gumbel and Frank copula functions are considered for
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the joint DF of (X1, . . . , X4, Y ). Table 1 shows that if the joint DF of (X1, . . . , X4, Y ) is represented
by Gumbel copula function with parameter α = 2.5, as

H(x1, . . . , x4, y) = exp{−[
4∑
i=1

(− lnFi(xi))
α + (− lnG(y))α]}1/α,

then the MRL of T4 is equal to 3.41 and is maximal.

Table 1. The maximum value of MRLs of Ti, i = 1, . . . , 4 in a 3-out-of-4 system at time
x = 0.8487657.

Gumbel copula Frank copula
α Optimal lifetime MRL β Optimal lifetime MRL

1.5 T4 2.80 0.5 T4 0.97
2.0 T4 3.24 1.0 T4 1.14
2.5 T4 3.41 1.5 T4 1.31

In what follows, we investigate the problem in the situation where two active redundant components
with lifetimes Y1 and Y2 (with DFs G1 and G2, respectively) are allocated to a k-out-of-n system
with dependent components. The decision is based on the case where the reliability function is
more in the sense of stochastic order [9].

Theorem 2.6. Suppose that Y1, Y2, X1, . . . , Xn are dependent r.v.s. Further, let Ti,j (Tj,i) be the
lifetime of system when the redundant component with lifetime Y1 is allocated to the component i
(j) and the other redundant component is allocated to the component j (i). Then Ti,j ≥st Tj,i if
and only if for all t ≥ 0

βi(t) ≥ βj(t), (3)

where

βi(t) = P (B−(i,j)(t) ≥ k − 2, Xi > t, Y2 > t) + P (B−(i,j)(t) ≥ k − 1, Xi > t, Y1 > t)

− P (B−(i,j)(t) ≥ k − 1, Xi > t, Y2 > t)− P (B−(i,j)(t) ≥ k − 2, Xi > t, Y1 > t),

βj(t) = P (B−(i,j)(t) ≥ k − 2, Xj > t, Y2 > t) + P (B−(i,j)(t) ≥ k − 1, Xj > t, Y1 > t)

− P (B−(i,j)(t) ≥ k − 1, Xj > t, Y2 > t)− P (B−(i,j)(t) ≥ k − 2, Xj > t, Y1 > t).

Example 2.7. Consider a 2-out-of-3 system. Suppose that the joint DF of (X1, X2, X3, Y1, Y2)
is given, based on the Gumbel copula function with parameter α = 1.2, as

H(x1, x2, x3, y1, y2) = exp{−[
3∑
i=1

(− lnFi(xi))
α +

2∑
j=1

(− lnGj(yj))
α]}1/α.

Further assume that F1(t) = Φ((ln(t))/2), where Φ is the DF of standard normal distribution,
F2(t) = 1− exp(−3t), F3(t) = 1− (1 + t)−1/2, G1(t) = 1− (1 + t)−1/3 and G2(t) = Φ((ln(t))/

√
5).

Figure 3 represents the plots of marginal DFs of the X1, X2, X3, Y1 and Y2. In Figure 3 it is clear
that X2 ≤st X1, X2 ≤st X3 and Y2 ≤st Y1. The reliability functions of Ti,j , i, j = 1, . . . , 3, i ̸= j are
plotted in Figure 4. It is concluded that the system reliability is in the optimal state if the stronger
spare is allocated to the weakest component and weaker spare is allocated to the component with
lifetime X1.

From Theorem 2.6, the following proposition is concluded.
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Figure 3: The plot of marginal DFs of main and redundant components.

Figure 4: The plot of reliability functions of Ti,j , i = 1, 2, 3, j = 1, 2.

Proposition 2.8. Suppose that Y1 ≥st Y2 and (Y1, Y2) are independent of the main components
of a k-out-of-n system. Then Ti,j ≥st Tj,i if and only if, for all t ≥ 0,

β∗i (t) ≥ β∗j (t), (4)

where

β∗i (t) = P (B−(i,j)(t) ≥ k − 1, Xi > t)− P (B−(i,j)(t) ≥ k − 2, Xi > t),

β∗j (t) = P (B−(i,j)(t) ≥ k − 1, Xj > t)− P (B−(i,j)(t) ≥ k − 2, Xj > t).

Using the simulation method, by considering the MRL criterion we present an example that
illustrates the optimal allocation of two spares in a k-out-of-n system.

Example 2.9. Suppose that in a 3-out-of-4 system with two spares, the marginal DFs of compo-
nents are

F1(t) = 1− exp(−t), F2(t) = 1− exp(−t0.5),
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F3(t) = 1− (1 + t)−1, F4(t) = 1− exp(−t3),

G1(t) = 1− exp(−t1/5), G2(t) = 1− (1 + t)−1,

respectively. In Table 2 we calculated the MRL of Ti,j , i, j = 1, . . . , 4, i ̸= j at time x = 0.9395076
for different copula functions with different parameters. For example Table 2.9 shows that when
the joint DF of (X1, . . . , X4, Y1, Y2) is given by Frank copula function with parameter β = 1.5, as

H(x1, . . . , x4,y1, y2)

=− 1

β
log(1 +

∏4
i=1(exp(−βFi(xi))− 1)

∏2
j=1(exp(−βGj(yj))− 1)

exp(−β)− 1
),

the MRL of T1,4 is maximum with amount of 1.81. This means that if the spares with lifetime Y1
and Y2 are allocated to the components with lifetime X1 and X4, respectively, then the MRL of
system is maximal.

Table 2. The MRLs of Ti,j , i, j = 1, . . . , 4, i ̸= j in a 3-out-of-4 system at x = 0.9395076.

Gumbel copula Frank copula
α Optimal lifetime MRL β Optimal lifetime MRL

1.5 T1,4 7.95 0.5 T1,4 1.29
2.0 T1,4 14.08 1.0 T1,4 1.52
2.5 T1,4 13.56 1.5 T1,4 1.81
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