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Preface

The series of biennial workshops on ”Copula Theory” which took place in Ferdowsi University
of Mashhad (2011 and 2013), Shahid Bahonar University of Kerman (2015) and Yazd University
(2017) with an emphasis on application in engineering sciences, agricultural sciences, actuarial
science, finance, reliability, survival analysis, economics and etc. is the result for the decision
of the scientific committee of the Ordered and Spatial Data Center of Excellence (OSDCE) of
Ferdowsi University of Mashhad (FUM) to organize workshops and seminars every two years.
This seminar is sponsored by the department of statistics, OSDCE of FUM, Islamic world Science
Citation database (ISC), Iranian Statistical Society and Actuarial Society of Iran to provide
suitable facilities for academics to have efficient research cooperation and will be held at Faculty
of Mathematical Sciences of FUM at 8 and 9 Feb. 2023. We hope all of the seminar committees
provide a suitable satisfactory atmosphere for the participants. After the first call of the seminar,
30 papers were accepted as oral presentations by the referees and scientific committee. The
attendants and participants in the seminar are in summary 40 people which are professors,
students and researchers of different institutes around Iran. Finally, we would like to extend our
sincere gratitude to the Research Council of FUM, the administration of Faculty of Mathematical
Sciences, the OSDCE, the Islamic world Science Citation center, the Iranian Statistical Society,
Actuarial Society of Iran, the scientific committee, the organizing committee, the referees, and the
students and staff of the department of statistics of FUM for their kind cooperation.
Mohammad Amini (Chair)
Feb. 2024

Topics

The aim of the seminar is to provide a forum for presentation and discussion of scientific works
covering theories and methods such as:

• Methods of copula construction
• Copula functions and dependence concepts
• Dependence modelling using copula function
• Inference based on copula
• Applications of copula function in spatial, survival, reliability, engineering, hydrological,
meteorological, agricultural, finance, economic data and etc.
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On the copula-based time between events control chart

Ahmad, H. 1 Amini, M. 2 Sadeghpour Gildeh, B. 3 Ahmadi-Nadi, A. 4

1,2,3 Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Iran
4 Department of Statistics and Actuarial Science, University of Waterloo, Canada

Abstract

Time Between Events (TBE) control charts are developed in this article to monitor processes
with multiple dependent production lines. An EWMA-type TBE chart has been proposed
for this. The copula approach describes production line dependence, while the homogeneous
Poisson process lines defects. The proposed methods are evaluated using an average time-to-
signal metric.
Keywords: Time Between Events, EWMA chart, Average time to signal, Homogeneous
Poisson process

1 Introduction
Control charts for counts is widely used in industry and other hands. In general, researchers have
studied the np chart for the number of counts, the p chart for the proportion of counts, u - chart
and c - chart for nonconformities in process. However, Shewhart control chart is not a good tool
to monitore process when the process has less of nonconforming, in this case we may encounter
the possibility of a false alarm. To solve like this problem, the time between events (TBE) chart

1hussam.ahmad@mail.um.ac.ir
2m-amini@um.ac.ir
3sadeghpour@um.ac.ir
4adel.ahmadinadi@uwaterloo.ca
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is a good tool to monitore the the quantity of conforming items between successive occurrence of
nonconforming items. Some examples of TBE data are the number of hours between failures of,
for example, valves [8], time between outbreaks of diseases in syndromic surveillance [15], time
between communication events in a social network [11], and time between accidents for monitoring
occupational safety [14].

Recently, control charts based on TBE became commonly, especially for univariate data
[4]. With TBE data, one measures the time elapsed between successive events of interest, e.g.,
manufacturing defects. These are also known as inter-arrival time data. Within the manufacturing
realm, this framework is needed due to increasing process quality, which has resulted in so-called
highquality processes. In high-quality processes, the rate of events or defects is very low and
hence the number of defects per sample over any reasonable aggregation period is usually zero or
very small. Some researchers have extended the univariate TBE control charts into the bivariate
or multivariate TBE datasets (see, for example [17, 18]). [9] focused on a production process
involving three consecutive sub-processes and regarded the production time of a batch of products
on each sub-process. Recently, [16] applied a multivariate cumulative sum TBE chart to monitor
the patient’s relief time.

Although most of the existing techniques in the literature regarding TBE charts have been
proposed for single-unit production processes, there are many real processes consisting of multiple
production lines (see for example [19, 7]) or multiple production stages (see for example [5]).

In a process with multiple production lines, in the sense we consider in this study, more than one
production line (or machine) are set up in parallel to produce a single product. In such a process,
production lines may operate independently or dependently. Reviewing the existing literature on
the TBE chart, there is no study discussing the TBE idea for such a process. Accordingly, being
motivated by the effectiveness of the TBE chart in monitoring high-quality processes as well as
rapidly spreading of manufacturing processes with multiple production lines, the main aim of this
study is to develop TBE control charts for monitoring the quality of a manufacturing process with
multiple-parallel production lines. Moreover, given that there are likely to be shared resources
between production lines of a process (like the same raw material or common power source and
operators), it is logical to assume that the quality of different production lines can be dependent.
Under this assumption, if one of the production lines or even some of them deviates from its in-
control (IC) state, there would be a high chance of deviation in the quality of the other lines. To
model such a dependency, copula models have been applied in this study [13, 2]. Copula functions
enable us to describe a wide range of dependencies between production lines [1].

Although we defined the problem from an industrial perspective to justify the need for this
work and to describe its applicability in practice, the proposed approaches can be applied efficiently
in other domains of application like the health monitoring area.

Eventually, the main contribution of the current study to the TBE chart literature is providing
an EWMA-type TBE control chart to assess the stability of a multiple lines process that its
quality is expressed by the time interval between producing two successive defective items. The
proposed techniques have been developed under the assumption that the number of defective times
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in production lines follows a homogeneous Poisson process. As a result, the time between two
successive defectives follows an exponential distribution. The exponential distribution is probably
the most popular lifetime model that adequately describes several types of phenomena [3, 12]. A
discrete Markov Chain approach is applied to design the EWMA-TBE control chart.

In this work, we use a new method to monitoring processes which has consists of two components
using copula function.

2 Motivation
Let us consider a manufacturing process with v = 2 parallel production lines, namely line 1 and
line 2, operating to produce a single item. Each line produces its own products, from raw materials
to ready-to-use items, and there is no direct relationship between their operations. It is further
assumed that the number of nonconformities of each line arrives according to homogeneous Poisson
processes. Thus, the time Yi between two successive defectives on production line i (i = 1, 2) follows
an Exponential distribution with parameter λi, i.e., Yi ∼ Exp(λi). The probability density function
(PDF) and cumulative distribution function (CDF) of the Exponential distribution are as follows:

fYi(y|λi) =
1

λi
exp

(
− y

λi

)
(2.1)

FYi(y|λi) = 1− exp

(
− y

λi

)
, λi > 0, y > 0, for i = 1, 2. (2.2)

In order to monitor the quality of such a process with two parallel production lines using the
TBE approach, we propose applying the variable T = min{Y1, Y2} as the monitoring statistic).
Then, the monitoring procedure would be carried out by plotting the observed values of this
statistic against proper control limits. This study introduced monitoring techniques based on the
idea of EWMA control charts. Furthermore, although no direct relationship is supposed to exist
between the production lines, some shared resources like raw material, power source, operator, and
environmental conditions can make their qualities dependent. To handle this phenomenon, it is
considered that the TBEs Y1 and Y2 have a joint distribution function H which is fully known
once a proper copula model C is determined. This study chooses three copula models from the
well-known Archimedean family of copulas, including the Clayton copula, the Gumbel copula, and
the Frank copula. Some preliminaries regarding the copula models are provided in the next section.

Eventually, it is worth mentioning to the developed methods would be suitable to check the
stability of the process in Phase II. This means that all the process parameters are assumed to be
known in advance.

3 Copula Theory
Copula modelling has become an increasingly widespread tool to model dependencies in various
domains of applications. Copula helps us to extract the dependence structure from the joint
distribution function of a set of variables and, at the same time, split the dependence structure
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from the univariate marginals. Using the Sklar’s theorem, the joint distribution H(y1, y2) of the
variables Y1 and Y2 with marginal CDFs FY1 and FY2 can be derived as:

H(y1, y2|λ1, λ2, C) = C (F1(y1|λ1), F2(y2|λ2)) , (3.1)
once the parametric form of the copula model C is determined. Sklar’s theorem also states that
when marginal distributions are continuous, which is the case of our study, a unique copula C
exists such that (3.1) holds. Before going through the copula models, let us define the dependence
measure Kendall’s tau τ . There are various kinds of copula models in the literature. This paper
concentrates on the three models from the bivariate Archimedean family of copulas that listed in
Table 1.

Table 1: Proposed copula models and their measures of dependence

Copula Copula function Kendall’s tau Space of θ λL λU

Clayton
[
max

(
u−θ + v−θ − 1, 0

)]−1/θ
θ/(θ + 2) [−1,∞)\{0} 2

−1
θ 0

Frank −1
θ log

[
1 + (e−θu−1)(e−θv−1)

e−θ−1

]
1 + 4

(
1
θ

∫ θ
0

t
et−1 dt− 1

)
/θ (−∞,∞)\{0} 0 0

4 EWMA control chart
Let Yi = (Y1i, Y2i) for i = 1, 2, 3, ... be a bivariate vector representing the times until producing
defective items by the production lines 1 and 2. For example, if the first line produces its first
defective item at time X1 and produces the second defective item at time X2, then Y11 = X1 and
Y12 = X2 −X1. Let consider again the pair (Y1i, Y2i) has the joint distribution H with exponential
marginals FY1 and FY2 and the known copula C. Here, we are interested in monitoring the process
to detect the possible deviations in vector λ = (λ1, λ2) from its IC value λ0 = (λ10, λ20) to the
out-of-control (OC) state λ1 = (λ11, λ21) as quickly as possible. Defining the monitoring statistic
Ti = min(Y1i, Y2i), the plotting statistic of the proposed EWMA chart is defined as:

Zi = rTi + (1− r)Zi−1, i = 1, 2, ..., (4.1)
where r is the smoothing parameter such that 0 < r ≤ 1. The initial value of the EWMA statistic
can be set as Z0 = E[T ]. It is not possible to derive the CDF of Zi in a closed form, so it is not
possible to calculate the control limits of the EWMA-TBE chart in the same way in Shewhart-
type. The next subsection provides a procedure to derive the control limits in an optimal manner.
However, the control limits of the EWMA-TBE chart should be calculated such that the chart
meets a target ATS0.

4.1 ATS computations
Average run length (ARL) is one of the most popular measures to quantify the performance of a
control chart. ARL is the expected value of Run Length (RL) which is defined as the number of
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samples taken before an OC signal (the monitoring statistic falls beyond the control limits). When
the successive monitoring statistics are independent, the Run Length distribution is Geometric with
the probability of success equal to p which means that ARL = 1

p . While the process is in IC (OC)
state, the probability p is equal to the probability of type I error α (1 - the probability of type II
error β). These lead to the IC and OC ARLs as ARL0 = 1

α and ARL1 = 1
1−β , respectively. For

the proposed Shewhart-type TBE chart, these probabilities can be calculated as:

α = FT (LCL|λ0) + 1− FT (UCL|λ0) = αL + αU (4.2)
β = FT (UCL|λ1)− FT (LCL|λ1), (4.3)

where FT is given by

FT (t|λ) = Pr(T ≤ t|λ)
= 1− Pr(min(Y1, Y2) ≥ t|λ)
= 1− (1− P (Y1 ≤ t)− P (Y2 ≤ t) + P (Y1 ≤ t, Y2 ≤ t))

= FY1(t|λ1) + FY2(t|λ2)− C (FY1(t|λ1), FY2(t|λ2)) . (4.4)

Employing equation (4.4) for the mentioned copula models, distribution function FT can be
obtained. The suitable performance metric for TBE control charts is ATS which is defined as
the average expected time from the start of the process until the chart signals [10]. ATS can also
be categorized into two types, IC and OC ATS denoted by ATS0 and ATS1, respectively. For the
proposed Shewhart-type TBE, the time to signal TS can be calculated as:

TS =
RL∑
i=1

Ti. (4.5)

If RL and T are independent, then we have:

ATS = E(TS) = E(T )× E(RL) = µT ×ARL, (4.6)

where µT = E(T ). Therefore, ATS0 and ATS1 can be computed as:

ATS0 =
1

α

∫ ∞

0
F̄T (t|λ0)dt (4.7)

ATS1 =
1

1− β

∫ ∞

0
F̄T (t|λ1)dt, (4.8)

where α and β are given in (4.2) and (4.3) and F̄T = 1− FT where FT is presented in (4.4).
The ATS of the EWMA-TBE chart can not be calculated straightforwardly. So, we use a

discrete Markov Chain approach proposed by [6] to evaluate the ATS of the proposed EWMA-
TBE control chart. In what follows, we propose a constrained optimization problem to calculate
the unknown parameters (LCL,UCL, r) such that the control chart meets some desired statistical
properties. To calculate the chart parameters so that it can detect a specific shift as fast as possible
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while being ATS-unbiased and meeting ATS0, we propose to solve the following optimization
problem:

Minimize ATS(LCL,UCL, r|λ1) (4.9)
Subject to ATS(LCL,UCL, r|λ0) = ATS0

ATS(LCL,UCL, r|λ1) ≤ ATS0

r ∈ (0, 1], 0 < LCL < UCL.

5 Simulation Study
In order to assess the performance of the proposed TBE control charts and investigate their
behaviors with respect to various process parameters, this section aims to conduct a numerical
study based on the ATS metric. First of all, let us set ATS0 = 370. In addition, suppose that Y1
and Y2 are jointly distributed with the known copula model C and exponential marginals given in
(2.1) with the IC parameter λ0 = (λ10, λ20) = (2, 3). It is also assumed that τ takes its values from
the set {0.3, 0.8} to cover both the moderate and strong dependences when the TBEs Y1 and Y2
are positively or negatively dependent.

To calculate the ATS1 values, the OC vector of the parameters is also considered as λ1 =
(λ11, λ21) = (δ1λ10, δ2λ20) where δ1 = 0.25, 0.50, 1.50, 2.00 and δ2 = 0.25, 0.75, 1.25, 2.00.

This setting helps us to assess the charts’ ability to detect shifts in λ1 and λ1 when they
deviate from the IC state in four directions: increasing-increasing, increasing-decreasing, decreasing-
increasing, and decreasing-decreasing.

Table 2 shows the results of the numerical analysis of the EWMA-TBE chart. The optimal
charts’ parameters r, LCL, and UCL as well the ATS1 value regarding these parameters are the
outputs of the optimization problem (4.9). From this table, the following results are drawn:

• Biasedness: The EWMA-TBE chart is ATS-unbiased across all shift combinations (δ1, δ2),
i.e., we have always ATS0 > ATS1.

• Sensitivity with respect to τ, λ10, and λ20: The table 2 shows that any changes in these
parameters notably affect the chart’s ability to detect OC states. For example, when δ1 =
1.25, δ2 = 0.75, the ATS1 values of chart based on Frank copula are 239.80, 297.77, 352.56,
and 254.71 when τ = −0.8,−0.3, 0.3, 0.8, respectively.

6 Conclusions
This article proposed an EWMA-type control chart for monitoring the quality of a process
with multiple production lines using the time between events approach. The proposed methods’
performance is evaluated based on the ATS metric. Numerical computations have been done to
assess the performance of the monitoring procedures with respect to different process parameters.
In brief, the results of the numerical study showed that the process parameters and the dependence
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parameter remarkably affect the OC performance of both charts and the proposed EWMA-TBE
chart is ATS-unbiased.

Future works can be considered to investigate the performance of the proposed control charts
in the presence of other types of defective processes like the non-homogeneous Poisson model and
can extend the proposed approaches in order to monitor the TBE dataset when there are more
than two production lines.
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Table 2: The optimal EWMA-TBE chart’s parameters (LCL,UCL, r) and
ATS1 values of the Clayton copula when λ0 = (2, 3).

(δ1, δ2) τ = −0.8 τ = −0.3
LCL∗ UCL∗ r∗ ATS LCL∗ UCL∗ r∗ ATS

Clayton
(0.25,0.25) 0.20815 3.58219 0.47941 5.59 0.26839 3.71165 0.39979 6.33
(0.50,0.25) 0.35828 2.03522 0.24774 8.91 0.30459 4.41992 0.36469 11.10
(0.50,0.75) 0.45828 2.47617 0.16558 28.66 0.39315 3.34816 0.26348 35.12
(1.50,0.75) 0.38122 0.97318 0.04911 218.04 0.52068 1.22286 0.03900 226.75
(0.50,1.25) 0.58361 1.29663 0.07511 51.83 0.63859 1.99065 0.09735 60.53
(2.00,1.25) 0.26299 1.46524 0.20839 51.20 0.49884 1.44187 0.07721 55.64
(2.00,2.00) 0.37192 1.23719 0.12940 28.81 0.39524 1.66608 0.12401 40.56

Frank
(0.25,0.25) 0.29697 1.74622 0.26657 1.36 0.26850 3.23277 0.33858 2.16
(0.50,0.25) 0.31450 1.56144 0.24483 2.56 0.35812 2.77649 0.24193 4.24
(0.50,0.75) 0.45951 1.32306 0.11537 9.37 0.46959 2.39967 0.15600 15.49
(1.25,0.75) 0.70824 0.88971 0.01000 239.80 0.66754 3.19835 0.06240 297.37
(0.50,1.25) 0.51387 1.07198 0.07607 18.57 0.58945 1.97494 0.09097 27.24
(2.00,1.25) 0.09243 1.75714 0.60187 9.54 0.28158 1.76409 0.14543 30.52
(2.00,2.00) 0.01338 1.91626 0.79589 5.35 0.38033 1.56823 0.10251 19.23
(δ1, δ2) τ = 0.3 τ = 0.8

Clayton
(0.25,0.25) 0.39092 4.71960 0.35326 3.07 0.54097 5.52803 0.35174 3.72
(0.50,0.25) 0.50150 3.63087 0.25261 6.26 0.65621 5.03795 0.28377 7.73
(0.50,0.75) 0.83868 2.74244 0.10439 18.39 1.02182 3.79977 0.13741 17.06
(1.25,0.75) 1.28014 2.29049 0.01950 338.50 0.78957 2.25157 0.03522 285.10
(0.50,1.25) 0.91214 2.55275 0.08274 25.11 1.01855 3.81607 0.13831 17.57
(2.00,1.25) 0.56778 2.36864 0.11755 36.47 0.64140 3.25509 0.15490 37.87
(2.00,2.00) 0.44377 2.67362 0.16748 25.62 0.46970 3.73081 0.22513 29.11

Frank
(0.25,0.25) 0.36911 4.80471 0.34942 3.45 0.49569 6.39568 0.37606 4.06
(0.50,0.25) 0.56777 3.84393 0.21339 6.81 0.84170 4.64207 0.19685 8.39
(0.50,0.75) 0.75107 3.43396 0.13487 20.21 1.06958 3.80232 0.12341 17.74
(1.25,0.75) 0.98322 3.43274 0.07001 352.56 0.89877 2.34357 0.03701 254.71
(0.50,1.25) 0.67412 4.08837 0.16666 28.01 1.05846 3.85811 0.12683 17.97
(2.00,1.25) 0.53647 2.46707 0.11517 38.77 0.60467 3.44515 0.16093 39.26
(2.00,2.00) 0.36468 2.94430 0.18837 27.57 0.46937 3.85522 0.21668 31.53
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Abstract

In wireless communication, in most mathematical modeling, it is assumed that the fading
coefficients are independent of each other, if physically, there is a correlation between them. In
this paper, the non-orthogonal multiple access (NOMA) Downlink with physical layer security
and dependent fading coefficients is investigated.The average secrecy rate (ASR) for the NOMA
channel in the presence of an eavesdropper has been investigated by modeling the dependence
of extinction coefficients by copula functions. With mathematical calculations and numerical
results, we compared the effect of correlation in the studied fading coefficients and independent
fading coefficients to find out whether this modeling is useful or harmful.
Keywords: Non-orthogonal multiple access (NOMA), Physical layer security, Copula
functions, Average secrecy rate

1 Introduction
The Non-orthogonal multiple access scheme is known as one of the effective techniques in multiple
access, which has the ability to improve spectral efficiency and fairness of users[1, 6, 2]. In wireless
communication of the first to fourth generation, the idea of orthogonal use of available channel
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resources was proposed in order to prevent channel interference between each user, Therefore,
the number of users who could use the channel’s resources was limited. In order to separate the
overlapping messages of different users, the technique of Successive Interference Cancellation (SIC)
in the receivers is used[3]. Unlike OMA schemes, in NOMA, the superimposed messages of all
multiple users are sent simultaneously on the entire channel, so there is a risk that an eavesdropper
can hear these messages. Therefore, in NOMA, there is a necessity to secure confidential messages
in case of illegal use [4]. A joint multivariate distribution function is used to investigate the
performance of NOMA channels with dependent fading coefficients, so having an efficient and
appropriate mathematical tool can help to investigate the dependence in NOMA channels. It
is suggested to apply and use copula functions as an effective method to express the dependence
between variables. Copula expresses joint distributions by applying marginal distribution functions,
and these joint distributions, which have different types. Copula functions are used in many sciences
including statistics, machine learning, image processing and many applications in engineering.[5,
20]. The physical layer security has been studied by many researchers for non-orthogonal multiple
access channels [13, 8]

Our work. In this paper, we investigate the downlink NOMA with two legitimate users (one
strong user and the other weak user) in the presence of an eavesdropper. It is assumed that there is
a dependence between the fading coefficients, and we model this dependence using copula functions.
The joint probability density function between fading coefficients is obtained with the help of copula
functions, and the average secrecy rates of each user is calculated. Then the effect of dependence
on the performance of each user is compared to the situation where the fading coefficients are
independent.

2 A Brief Review of Copula Theory
In order to model the dependence between channel fading coefficients, the copula function is used.
Copula is a multivariate cumulative distribution function so that the distribution of marginal
probabilities of each variable in the interval [0, 1] has a uniform distribution [5]. It is necessary
to express the probability density function (PDF) of channel fading coefficients with the help of
copula functions in order to calculate the average secrecy rate in NOMA systems. Suppose that
S = (Xm, Xn) is a vector of two random variables with Cumulative Distribution Function (CDF)
as F (xm, xn) and marginal CDFs F (xm) and F (xn) respectively.

A copula is a function C : [0, 1]2 → [0, 1] which satisfies following properties:
For each u and v in the interval [0, 1] we have:

c (u, 0) = c (0, v) = 0, c (u, 1) = u and c (1, v) = v (2.1)

The 2-increasing property, for every u1, u2, v1, v2 in the interval [0, 1] such that u1≤u2 and
v1≤v2:

C (u2, v2)− C (u1, v2)− C (u2, v1) + C(u1, v1)≥0 (2.2)
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Theorem 2.1. (Sklar’s theorem): This theorem states that any multivariate CDF of a random
variable can be expressed in terms of marginal functions. Let F (xm, xn) as CDF of random variables
with margins F (xi) for i = m,n. Then there exists a copula C such that for all xm, xn in R̄ [4].

F (xm, xn) = C(F (xm) , F (xn)) (2.3)

Then, according to the Sklar’s theorem, the joint PDF is obtained for the marginal functions
F (xm) and F (xn) respectively.

f (xm, xn) = f (xm) f (xn) c(F (xm) , F (xn)) (2.4)

Where c (F (xm) , F (xn)) =
∂2C(F (xm),F (xn))
∂F (xm).∂F (xn)

is the Copula density function. Also f (xm) and
f (xn) are marginal PDFs, respectively. There are many different copulas that can be used.

In this paper, we use FGM copula to analyze the performance criteria of the proposed system
from an empirical point of view, that the FGM copulas are the simplest mode for calculating the
joint PDFs [5] and consider negative and positive correlations and independence situation. FGM
copulas are defined as follows:

C (u, v) = uv(1 + θ (1− u) (1− v)) (2.5)

where θϵ [−1, 1] is defined as the dependence parameter and u = FXm(xm) and v = FXn(xn).
Negative and positive values of θ indicate negative and positive dependence, respectively, and for
zero value, we have independence.

3 Secrecy Rate Region of NOMA:
Theorem 3.1. The average secrecy rates (ASC) for users with dependent fading coefficients are
obtained as follows:

RSec
n,ave≤Eγm,γe [log (1 + αmγm)− log (1 + αmγe)]

+ (3.1)

RSec
n,ave≤Eγn,γe [log

(
1 +

αnγn
αmγn + 1

)
− log

(
1 +

αnγe
αmγe + 1

)
]+ (3.2)

where αi for i = m,n expresses power allocation factors for each user, where αm + αn = 1 and
0≤αm≤αn≤1. In relations(3.1) and (3.2), the value of γi is equal to γi = P |hi|2

Ni
for i = m,n, e.
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Lemma 3.2. The joint PDF of γi and γj (f (γi, γj)) based on Farlie-Gumbel-Morgenstern (FGM)
Copula is determined as:

f (γi, γj) =
e

−γi
γ̄i

−
γj
γ̄j

γ̄iγ̄j
[1 + θ

(
1− 2e

−γi
γ̄i

)(
1− 2e

−γj
γ̄j

)
] (3.3)

that the marginal probability density functions in relation (3.4) are defined as follows:

fγi (γi) =
1

γ̄i
e

−γi
γ̄i i = m,n, e γi > 0 γ̄i =

1

2σ2hi

(3.4)

By simplifying and mathematical calculations, the ASC of the user m is calculated as follows:

Rsec
m,ave≤[−e

1
αmγ̄m Ei

(
− 1

αmγ̄m

)
+ e

(
γ̄e+γ̄m

αmγ̄eγ̄m

)
Ei

(
− γ̄e + γ̄m
αmγ̄eγ̄m

)
θ(−e

(
γ̄e+γ̄m

αmγ̄eγ̄m

)
Ei

(
− γ̄e + γ̄m
αmγ̄eγ̄m

)
+ e

(
2γ̄e+γ̄m
αmγ̄eγ̄m

)
Ei

(
−2γ̄e + γ̄m
αmγ̄eγ̄m

)
+ e

(
γ̄e+2γ̄m
αmγ̄eγ̄m

)
Ei

(
− γ̄e + 2γ̄m
αmγ̄eγ̄m

)
− e

(
2γ̄e+2γ̄m
αmγ̄eγ̄m

)
Ei

(
−2γ̄e + 2γ̄m

αmγ̄eγ̄m

)
)]+ (3.5)

The average secrecy rate of the user n is also calculated as follows:

RSec
n,ave≤[e

1
αmγ̄n Ei

(
− 1

αmγ̄n

)
− e

1
γ̄n Ei

(
− 1

γ̄n

)
− e

(
γ̄e+γ̄n

αmγ̄eγ̄n

)
Ei

(
− γ̄e + γ̄n
αmγ̄eγ̄n

)
+ e

(
γ̄e+γ̄n
γ̄eγ̄n

)
Ei

(
− γ̄e + γ̄n

γ̄eγ̄n

)
+ θ(e

(
γ̄e+γ̄n

αmγ̄eγ̄n

)
Ei

(
− γ̄e + γ̄n
αmγ̄eγ̄n

)
− e

(
2γ̄e+γ̄n
αmγ̄eγ̄n

)
Ei

(
−2γ̄e + γ̄n
αmγ̄eγ̄n

)
− e

(
γ̄e+2γ̄n
αmγ̄eγ̄n

)
Ei

(
− γ̄e + 2γ̄n
αmγ̄eγ̄n

)
+ e

(
2γ̄e+2γ̄n
αmγ̄eγ̄n

)
Ei

(
−2γ̄e + 2γ̄n

αmγ̄eγ̄n

)
− e

(
γ̄e+γ̄n
γ̄eγ̄n

)
Ei

(
− γ̄e + γ̄n

γ̄eγ̄n

)
+ e

(
2γ̄e+γ̄n
γ̄eγ̄n

)
Ei

(
−2γ̄e + γ̄n

γ̄eγ̄n

)
+ e

(
γ̄e+2γ̄n
γ̄eγ̄n

)
Ei

(
− γ̄e + 2γ̄n

γ̄eγ̄n

)
− e

(
2γ̄e+2γ̄n

γ̄eγ̄n

)
Ei

(
−2γ̄e + 2γ̄n

γ̄eγ̄n

)
)]+ (3.6)

4 NUMERICAL RESULS:
In this section, the ASR of each users per fixed eavesdropper channel gain SNR γ̄e, increases with
the increase of each user’s channel gains SNR ( γ̄m, γ̄n). The ASR of each users for different values
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of parameter θ is shown in Figer 1 ,the ASR of user m for positive dependence has a better
performance than the ASR of users with independent joint probability density function.

Figure 1: The ASR of user m versus γ̄m, for different values of dependence parameter
θ.
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Abstract

 In this article, we introduce a generalization of the skew distributions when the random
variables are associated to a copula. Considering two Gaussian-copula and t-copula, we present
a generalisation of skew-normal as well as skew-t distributions. We investigate the performance
of our proposed distributions using a simulation study.
Keywords: Skew-normal distribution , Skew-t distribution, Copula function, Gaussian-Copula
function, Student,s t-copula function.

1 Introduction
1.1 Copula Theorem
A copula, as explained by Sklar (1959), is a function used to link univariate marginal distributions of
random variables into a multivariate distribution. In brief, suppose a 2-dimensional random vector
X = (x1, x2)

T has its marginal cumulative distribution functions F1(x1), F2(x2) and probability
density functions f1(x1), f2(x2), Therefore [4]

F (x1, x2) = C[F1(x1), F2(x2)] = C(u1, u2) (1.1)

where C denotes the copula function.
1fereshteh_ arad@math.uk.ac.ir
2sheikhy.a@uk.ac.ir
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Gaussian Copula. For a given correlation matrix Σ =

[
1 ρ
ρ 1

]
, the Gaussian copula with

correlation matrix Σ can be written as

CGa(u1, u2) = ΦΣ(Φ
−1(u1),Φ

−1(u2)) (1.2)

where ΦΣ is the joint bivariate distribution function of a Gaussian variable with mean vector zero
and correlation matrix Σ and Φ−1(.) is the CDF of univariate standard normal distribution.

Student,s t-copula. For a given correlation matrix Σ =

[
1 ρ
ρ 1

]
the Student,s t-copula with

correlation matrix Σ and ν degrees of freedom can be written as

Ct(u1, u2) = TΣ,ν(T
−1
ν (u1), T

−1
ν (u2)) (1.3)

where TΣ,ν is the joint bivariate distribution function of a Student,s t-variable with correlation
matrix Σ and ν degrees of freedom and Tν(.) is the CDF of univariate Student,s-t distribution.

1.2 Skew-Symmetric Distributions

If f0 is a one-dimensional probability density function symmetric about 0, and G is a one
dimensional distribution function such that G0 exists and is a density symmetric about 0, then
f(z) = 2f0(z)G(w(z)), z ∈ R is a density function for any odd function w(.) [1].

2 Main results
In this part, we will obtain the distribution of Z d

= (X|Y > µy) when X,Y are associated to a
copula we first state theoretical results, we will examine the obtained results using a simulation
study.

Lemma 2.1. Assume that two continuous random variables X and Y are connected via the copula
function CX,Y , then the distribution of Z d

= (X|Y > µy) is given by

fZ(z) = mCfX(z)(1−D1CX,Y ), z ∈ R, (2.1)

where D1CX,Y =
∂CX,Y

∂FX(z) if exist otherwise 0 and mC = (
∫
C fY (y)dy)

−1 [2, 3].

Theorem 2.2. Suppose that variables X and Y with distribution functions FX(x) and FY (y) be
connected to each other through gaussian-copula, then the distribution of Z d

= (X|Y > µy) is given
by

fZ(z) = mCfX(z)Φ(
ρΦ−1(FZ(z))− Φ−1(FY (µy))√

1− ρ2
), z ∈ R, (2.2)

Proof. It is easily proved using the above lemma.



Seventh Seminar on Copula Theory and its Applications 22

Corollary 1: Suppose X has t-distribution with ν degrees of freedom and Y has a distribution
function FY (y) with mean µy are related by the gaussian-copula with correlation ρ, then the
distribution of Z d

= (X|Y > µy) is

fZ(z) = mCt1(z; ν)Φ(
ρΦ−1(Tν(z))− Φ−1(FY (µy))√

1− ρ2
) (2.3)

Proof. Using the stated theorem we have

fZ(z) = mC

[
t1(z; ν)−

∂CGa
X,Y

∂Tν(z)

∂Tν(z)

∂z

]
= mC

[
t1(z; ν)− t1(z; ν)

∂CGa
X,Y

∂Tν(z)

]
= mCt1(z; ν)Φ(

ρΦ−1(Tν(z))− Φ−1(FY (µy))√
1− ρ2

)

which is 2.3.

Theorem 2.3. Suppose that variables X and Y with distribution functions FX(x) and FY (y) be
connected to each other through t-copula, then the distribution of Z d

= (X|Y > µy) is given by

fZ(z) = mCfX(z)T (
ρT−1(FX(z))− T−1(FY (µy))√

1− ρ2
(

ν + 1

ν + T−1(FX(z))2
)
1
2 ; ν + 1), (2.4)

Proof. It is easily proved

Corollary 2: Suppose X has normal distribution and Y has a distribution function FY (y) with
mean µy are related by the t-copula with correlation ρ, then the distribution of Z d

= (X|Y > µy) is

fZ(z) = mCϕ(z)T (
ρT−1(Φ(z))− T−1(FY (µy))√

1− ρ2
(

ν + 1

ν + T−1(Φ(z))2
)
1
2 ; ν + 1) (2.5)

where mµy = (
∫
µy
fY (y)dy)

−1.
The proof is similar to the proof of Corollary 1 and is omitted.

2.1 Simulation Results
To check the results presented in Corollary 1, we generated 1000 random pairs of (Xi, Yi), i =
1, 2, ..., 1000, using Monte Carlo simulation so that X has a t distribution with ν = 12 and Y has
an exponential distribution with λ = 20 and they are related to each other through the Gaussian-
copula with correlations ρ = 0.5 and ρ = 0.9. We then repeated this procedure 5000 times. Tables
1 summarized the AIC and BIC of our proposed skew-copula distribution against the skew-t and
skew-normal ones. As seen from this table, skew-copula outperforms skew-t and skew-normal, see
also figure 1.
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Table 1: AIC and BIC of skew-t and skew-normal and skew-copula.

Estimation skew-t skew-normal skew-copula
AICρ=0.5 1062 1063 1061
BICρ=0.5 1076 1077 1074
AICρ=0.8 840 838 838
BICρ=0.8 853 853 852

Figure 1: Performance of skew-t and skew-normal and skew-copula, a) ρ =
0.3, b) ρ = 0.8.

Next, to examine the equation stated in Corollary 2, we generated 1000 random pairs of
(Xi, Yi), i = 1, 2, ..., 1000, so that X has a normal distribution and Y has an exponential
distribution with λ = 10 and they are related to each other through the t-copula with correlations
ρ = 0.3 and ρ = 0.8. We then repeated this procedure 5000 times. Tables 2 summarized the AIC
and BIC of our proposed skew-copula distribution against the skew-t and skew-normal ones. As
you can see in Table 2 and figure 2 skew-copula performs better according to the two criteria AIC
and BIC.

Table 2: AIC and BIC of skew-t and skew-normal and skew-copula.

Estimation skew-t skew-normal skew-copula
AICρ=0.3 1038 1035 1034
BICρ=0.3 1050 1048 1045
AICρ=0.8 847 846 845
BICρ=0.8 858 857 857

References
[1] Azzalini, A. Capitanio, A. (2003), Distributions generated by perturbation of symmetry with

emphasis on a multivariate skew t distribution,Statistical Methodology, J. Royal Statistical
Society, series B, 65, 367-389.



Seventh Seminar on Copula Theory and its Applications 24

Figure 2: Performance of skew-t and skew-normal and skew-copula, a) ρ =
0.3, b) ρ = 0.8.
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Abstract

Stochastic comparison on order statistics from heterogeneous-dependent observations has
been paid lots of attention recently. This paper devotes to investigating the ordering properties
of order statistics from dependent observations. In the presence of the Archimedean copula or
survival copula for the random variables of samples having generalized Gompertz distribution, we
obtain the usual stochastic order of the sample extremes. In addition, some examples illustrating
the main results are presented as well.
Keywords: Generalized Gompertz distribution, Majorization, Usual stochastic order, extreme
order statistics, Archimedean copula.

1 Introduction
Let X1:n ≤ . . . ≤ Xn:n denote the order statistics arising from random variables X1, . . . , Xn. Order
statistics play a prominent rule in the reliability theory, life testing, operations research and other
related areas. In reliability theory, the kth order statistic coresponds to the lifetime of a (n−k+1)-
out-of-n system. In particular, X1:n and Xn:n correspond to the lifetimes of series and parallel
systems, respectively. In recent years, stochastic ordering relations between extreme order statistics
from parametric families of distributions have been studied extensively by many researchers. The
Gompertz distribution is one of classical mathematical models that represent survival function
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based on laws of mortality. This distribution plays an important role in modeling human mortality
and fitting actuarial tables. [3] proposed the exponentiated Gopertz distribution, and referred to
it as the generalized Gompertz (GG) distribution. It has a bathtub shaped failure function and
can be used to provide a good fit for the real data than well-known distributions. Further, this
distribution generalizes some well-known distributions and can be used to model phenomena which
are common in reliability and biological studies. The non-negative random variable X is said to
have a generalized Gompertz distribution (GGD) with three parameters λ, α, θ if its cumulative
distribution function is given by the following form

F (x) = [1− exp{−λ
α
(eαx − 1)}]θ, λ, θ, α > 0, x ⩾ 0. (1.1)

The parameter θ is a shape parameter. The generalized Gompertz distribution with parameters
λ, α and θ will be denoted by GGD(λ, α, θ). The first advantage of GGD is that it has the closed
form of its the cumulative distribution function.

In the presence of the Archimedean copula, section 3 studies stochastic comparison of series or
parallel dependent systems in terms of the usual stochastic order. To continue our discussion, we
need definitions of some stochastic orders and the concept of majorization which is given in Section
2 of the paper. Section 4 concludes the paper.

2 Preliminaries
There are many ways in which a random variable X can be said to be smaller than another random
variable Y . In the usual stochastic ordering case, a random variable X with survival function
F̄ = 1 − F is stochastically smaller than a random variable Y with survival function Ḡ = 1 − G,
denoted by X ≤st Y , if F̄ (x) ≤ Ḡ(x) for all x. For more details on various kinds of stochastic
orders, one may refer to [7].

For a random vector X = (X1, . . . , Xn) with the joint distribution function F and univariate
marginal distribution functions F1, . . . , Fn, if there exists some C : [0, 1]n −→ [0, 1] such that, for
all xi , i = 1, . . . , n,

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)),

then C is called as the copula of X. A real function ϕ is n-monotone on (a, b) ⊆ R if (−1)n−2ϕ(n−2)

is decreasing and convex in (a, b) and (−1)kϕ(k)(x) ≥ 0 for all x ∈ (a, b), k = 0, 1, . . . , n − 2, in
which ϕ(i)(.) is the ith derivative of ϕ(.). For a n-monotone (n ≥ 2) function ϕ : [0,+∞) −→ [0, 1]
with ϕ(0) = 1 and limx→+∞ ϕ(x) = 0, let ψ = ϕ−1, be the right continuous inverse of ψ, then

Cϕ(u1, . . . , un) = ϕ(ψ(u1) + . . .+ ψ(un)), for allui ∈ [0, 1], i = 1, . . . , n,

is called an Archimedean copula with generator ϕ. Archimedean copulas cover a wide range of
dependence structures including the independence copula. For more detail on Archimedean copulas,
readers may refer to [6].

Majorization orders are quite useful and powerful in establishing various inequalities. For
preliminary notations and terminologies on majorization theory, see [5]. Let x = (x1, . . . , xn)
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and y = (y1, . . . , yn) be two real vectors and x(1) ≤ . . . ≤ x(n) be the increasing arrangement of the
components of the vector x.

Definition 1. The vector x is said to be

(i) weakly submajorized by the vector y (denoted by x ⪯w y) if
∑n

i=j x(i) ≤
∑n

i=j y(i) for all
j = 1, . . . , n,

(ii) weakly supermajorized by the vector y (denoted by x
w
⪯ y) if

∑j
i=1 x(i) ≥

∑j
i=1 y(i) for all

j = 1, . . . , n.

Before proceeding to main results, let us present some lemmas to be utilized in the sequel. The
first two lemmas concern majorization, Schur-convexity and Schur-concavity.

Lemma 2.1 ([5], Theorem 3.A.4). Suppose I ⊂ R is an open interval and Φ : In −→ R+ is
continuously differentiable. Necessary and sufficient conditions for Φ to be Schur-convex (Schur-
concave) on In are

(i) Φ is symmetric on In,

(ii) for i ̸= j and all z ∈ In,

(zi − zj)

(
∂Φ(z)

∂zi
− ∂Φ(z)

∂zj

)
≥ (≤)0,

where ∂Φ(z)
∂zi

denotes the partial derivative of Φ with respect to its i-th argument.

Lemma 2.2 ([5], Theorem 3.A.8). For a function l on A ∈ Rn, x ⪯w (
w
⪯)y implies l(x) ≤ l(y) if

and only if it is increasing (decreasing) and Schur-convex on A.

The following lower orthant order on Archimedean copulas will also be utilized in the sequel.

Lemma 2.3 ([4], Lemma A.1). For two n-dimensional Archimedean copulas Cϕ1(u) and Cϕ2(u),
if ψ2 ◦ ϕ1 is super-additive, then Cϕ1(u) ≤ Cϕ2(u) for all u ∈ [0, 1]n.

3 Main result
[4] might be the first to investigate the ordering properties of order statistics from statistically
dependent observations assembled with some kind of Archimedean copulas. In this section, we carry
out stochastic comparisons between parallel systems consisting of interdependent heterogeneous
GGD components assembled with some kind of Archimedean copula according to the usual
stochastic order. Recall that a random variable X belongs to the Exponentiated Scale (ES) family
of distributions if X ∼ H(x) = [G(λx)]α, where α, λ > 0 and G is called the baseline distribution
function which we assume that is absolutely continuous. In the sequel, we denote this family by
ES(α, λ).

In the ES family, [2] obtained the following theorems for the comparison of parallel systems
under the usual stochastic order.
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Theorem 3.1. For X ∼ ES(α, λ, ϕ1) and X∗ ∼ ES(α∗, λ, ϕ2),

(i) if ϕ1 or ϕ2 is log-convex, and ψ2 ◦ ϕ1 is super-additive, then (α1, . . . , αn) ⪰w (α∗
1, . . . , α

∗
n)

implies Xn:n ≥st X
∗
n:n;

(ii) if ϕ1 or ϕ2 is log-concave, and ψ1 ◦ ϕ2 is super-additive, then (α1, . . . , αn)
w
⪰ (α∗

1, . . . , α
∗
n)

implies Xn:n ≤st X
∗
n:n.

The following result follows immediately from Theorem 3.1.

Theorem 3.2. For X ∼ GGD(θ, α, λ, ϕ1) and X∗ ∼ GGD(θ∗, α, λ, ϕ2),

(i) if ϕ1 or ϕ2 is log-convex, and ψ2 ◦ ϕ1 is super-additive, then (β1, . . . , βn) ⪰w (β∗1 , . . . , β
∗
n)

implies Xn:n ≥st X
∗
n:n;

(ii) if ϕ1 or ϕ2 is log-concave, and ψ1 ◦ ϕ2 is super-additive, then (β1, . . . , βn)
w
⪰ (β∗1 , . . . , β

∗
n)

implies Xn:n ≤st X
∗
n:n.

For the Archimedean survival copula, log-convexity of the generator leads to the RTIS (right
tail increasing in sequence) property. Also, for many sub-families of Archimedean copulas, the
superadditivity of ψ2 ◦ ϕ1 can be roughly interpreted as follows: Kendall’s τ of the copula with
generator ϕ2 is larger than that with generator ϕ1 and hence is more positive dependent.

Example 3.3. Suppose that X and X∗ have either of the following two dependence structures.
(i) Gumbel copulas with respective generators

ϕ1(x) = e−x
1
β1 , ϕ2(x) = e−x

1
β2 , β2 ≥ β1 ≥ 1;

(ii) Archimedean copulas with respective generators

ϕ1(x) = (x
1
β1 )−1, ϕ1(x) = (x

1
β1 )−1, β2 ≥ β1 ≥ 1.

It is easy to see that ϕi is log-convex for i = 1, 2. In view of ψ2(ϕ1(0)) = 0 and the convexity of
ψ2(ϕ1(x)) = x

β2
β1 , we conclude that ψ2(ϕ1(x)) is super-additive by Proposition 21.A.11 in [5].

Theorem 3.4. For X ∼ GGD(θ, α,λ, ϕ1) and X∗ ∼ GGD(θ, α,λ∗, ϕ2), ϕ1 or ϕ2 is log-convex,
and ψ2 ◦ ϕ1 is super-additive, then (λ1, . . . , λn)

w
⪰ (λ∗1, . . . , λ

∗
n) implies Xn:n ≥st X

∗
n:n.

Proof. Xn:n and X∗
n:n have their respective distribution functions, for x ≥ 0,

FXn:n(x) = ϕ1
( n∑
i=1

ψ1([1− exp{−λi
α
(eαx − 1)}]θ)

)
= J(λ, α, θ, x, ϕ1), (3.1)

FX∗
n:n

(x) = ϕ2
( n∑
i=1

ψ2([1− exp{−λ
∗
i

α
(eαx − 1)}]θ)

)
= J(λ∗, α, θ, x, ϕ2). (3.2)
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We only prove the case that ϕ1 is log-convex, and the other case can be finished similarly. Since ϕ1
is decreasing, we have

∂J(λ, α, θ, x, ϕ1)

∂λi
=

(eαx − 1)

α
θ exp{−λi

α
(eαx − 1)}[1− exp{−λi

α
(eαx − 1)}]θ−1

×
ϕ′1
∑n

i=1 ψ1([1− exp{−λi
α (eαx − 1)}]θ)

)
ϕ′1
(
ψ1([1− exp{−λi

α (eαx − 1)}]θ)
) ≥ 0,

for all x > 0,

That is, J(λ, α, θ, x, ϕ1) is increasing in λi for i = 1, . . . , n. Furthermore, for i ̸= j,

∂J(λ, α, θ, x, ϕ1)

∂λi
− ∂J(λ, α, θ, x, ϕ1)

∂λi
=

(eαx − 1)

α
θϕ′1

n∑
i=1

ψ1([1− exp{−λi
α
(eαx − 1)}]θ)

)
(

exp{−λi
α (eαx − 1)}

1− exp{−λi
α (eαx − 1)}

ϕ1(ψ1([1− exp{−λi
α (eαx − 1)}]θ))

ϕ′1
(
ψ1([1− exp{−λi

α (eαx − 1)}]θ)
)−

exp{−λj

α (eαx − 1)}
1− exp{−λj

α (eαx − 1)}
ϕ1(ψ1([1− exp{−λj

α (eαx − 1)}]θ))
ϕ′1
(
ψ1([1− exp{−λj

α (eαx − 1)}]θ)
)).

Note that the log-convexity of ϕ1 implies the decreasing property of ϕ1

ϕ′
1
. Since ψ1([1−exp{−λi

α (eαx−
1)}]θ) is decreasing in λi > 0, then
ϕ1(ψ1([1− exp{−λj

α (eαx − 1)}]θ))
ϕ′1
(
ψ1([1− exp{−λj

α (eαx − 1)}]θ)
) is increasing in λi > 0. Also the decreasing property of

exp{−λi
α
(eαx−1)}

1−exp{−λi
α
(eαx−1)}

, and thus

exp{−λi
α
(eαx−1)}

1−exp{−λi
α
(eαx−1)}

ϕ1(ψ1([1− exp{−λi
α (eαx − 1)}]θ))

ϕ′1
(
ψ1([1− exp{−λi

α (eαx − 1)}]θ)
) is increasing in λi > 0. So, for i ̸= j,

(λi − λj)

(
∂J(λ, α, θ, x, ϕ1)

∂λi
− ∂J(λ, α, θ, x, ϕ1)

∂λj

)
≤ 0.

Then Schur-concavity of J(λ, α, θ, x, ϕ1) follows from Lemma 2.1. According to Lemma 2.2
(λ1, . . . , λn)

w
⪰ (λ∗1, . . . , λ

∗
n) implies J(λ, α, θ, x, ϕ1) ≤ J(λ∗, α, θ, x, ϕ1). On the other hand, since

ψ2 ◦ ϕ1 is super-additive by Lemma 2.3,
we have J(λ∗, α, θ, x, ϕ1) ≤ J(λ∗, α, θ, x, ϕ2). So, it holds that

J(λ, α, θ, x, ϕ1) ≤ J(λ∗, α, θ, x, ϕ1) ≤ J(λ∗, α, θ, x, ϕ2).

That is, Xn:n ≥st X
∗
n:n.
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[1] proved the following general result.

Theorem 3.5. For X ∼ ES(α, λ, ϕ1) and X∗ ∼ ES(α∗, λ, ϕ2), if ψ2 ◦ ϕ1 is super-additive, then
α

w
⪰ α∗ implies X1:n ≤st X

∗
1:n.

The following corollary immediately follows from the above theorem.

Corollary 3.6. Suppose X ∼ GGD(α, λ, θ, ϕ1) and X∗ ∼ GGD(α, λ, θ∗, ϕ2) and ϕ2 ◦ψ1 is super-
additive. Then β

w
⪰ β∗ implies X1:n ≤st X

∗
1:n.

4 Conclusions
In this paper, in the presence of the Archimedean copula or survival copula for the random variables
of samples having generalized Gompertz distribution, we obtain the usual stochastic order of the
sample extremes. In addition, some examples illustrating the main results are presented as well.
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Abstract

The rapid spread of Covid-19 since January 2020 has dramatically affected financial markets
and economies all over the world, especially in United States. This paper aims at utilizing
the regression model of D-Vine Copula to investigate about the effects of each input variables
related to coronavirus news on our three response variables which are three famous indices in
U.S. Findings demonstrate that the fitted quantile curves of all input variables suggest that the
news variables have the most negative effect on all mentioned indices.
Keywords: Pandemic, Covid-19, indices, D-Vine copula, Kendall’s tau

1 Introduction
Everything started in December 2019. The coronavirus disease also known as COVID-19 was first
reported from Wuhan, China. Not only this virus with mortality rate of 3% has affected the families
adversely in over 120 countries, but also it has slowed the monetary and financial markets in all
over the world. On May 11, president trump announces the suspension of all travel from Europe
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excluding United Kingdom to the United States for the next 30 days. In just one day, three of
top’s Wall Street indices, S&P 500, NASDAQ 100 and Dow jones fell more than 9 percent. Black
Thursday, March 12 was marked as the worst day of stock exchange market in 21th century. These
indices have lost their worth nearly 20 percent in the last two weeks. US stocks have lost $11.5
trillion in one month since February 19th.

Vine Copula model and its classes has a variety of functions and long has been used in
determining the independent data for multivariate data structures. This class of flexible copula
models has become very well known in the recent years for many applications in various fields such
as finance and engineering. The popularity of vines copulas is due to the fact that it allows in
addition to the separation of margins and dependence by the copula approach, tail asymmetries,
and separate multivariate component modeling. In 2010, Joe et all, described tail dependence and
conditional tail dependence and also its probabilities[6]. After that, Nikoloulopoulos and et al in
2012, published a paper about Vine Copulas with symmetric tail dependence and its applications
to financial return data[9]. Two years later in 2014, So and Yeung, wrote a paper “Vine-Copula
GARCH model with dynamic conditional dependence”. They developed a generic approach to
specifying dynamic conditional dependence using any dependence measures [12]. Finally, Kraus
and Czado in 2016, Conducted a research about D-Vine copula based quantile regression [7]. On
the other hand, some studies have been done regarding the pandemic’s effect on financial markets.
In 2020, Corbet et al, indicated that the volatility relationship between the main Chinese stock
markets and Bitcoin evolved significantly during the period of epidemic [4]. Later in the same year,
Zhang et al. [13]. Then again in 2020, Ali et al. [2] have done some research in this area. This
paper is organized as follows. In section 2 we explain that how and where we achieved the data
and using them in analyzing the situation of the 3 popular indices. Section 3 is dedicated to the
explanation of Vine Copula models which we use for our analysis in the next section. Finally, the
last section, section 5 has to do with the discussion and conclusion of the paper.

2 Data

We would like to investigate the effects of coronavirus regarding the number of cases and related
financial news on three indices since the beginning of year 2020 until the end of May. We have two
sets of data. Financial news which are released in specific time in the most popular websites and
also coronavirus cases in United States from the moment that the first case was reported. Both
of the data’s date are from January 1st to the end of May (we collected data for 5 months). We
acquired data of cases from the website of Worldometers and financial news from finance-related
websites such as: Yahoo Finance, Bloomberg, Harvard Business Review, Department of treasury
and Bureau of Economic Analysis using text mining. We searched those keywords and collected the
first 1000 results for each keyword from January 1st to May 31st. In order to obtain a more robust
dataset, we corrected the results by filtering only those results that had reported a publication date
between that period and then removed duplicate results. It gave us a total number of 397 web
pages from those websites.
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3 Vine Copula Models
The n-dimensional vine copulas are built via mixing from n(n − 1)/2 bivariate linking copulas on
trees and their copula density functions. Since the densities of multivariate vine copulas can be
factorized in terms of bivariate copulas and lower-dimensional margins. Depending on the type
of trees, various vine copulas can be constructed. Two boundary cases are D-vines and C-vines.
(see Bedford and Cooke (2002, 2001)[2] [3], Kurowicka and Cooke (2006) [8] and Section 4.5 of Joe
(1997)[5]). For D-vines the density is given as equations 3.1 (Aas et al. (2009)[1]),

f (x1, . . . , xn) =
n∏

k=1

fk(xk)
n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1

(
Fi|i+1,...,i+j−1, Fi+j|i+1,...,i+j−1

)
(3.1)

Index j denotes the tree/level, while i runs over the edges in each tree.

3.1 D-vine based quantile regression model
The main purpose of D-vine copula based quantile regression is to predict the quantile of a response
variable Y given the outcome of some predictor variables X1, . . . , Xn, where Y ∼ Fy and Xj ∼
Fj ; j = 1, . . . , n. Hence, the focus of interest lies on the joint modeling of Y and X and in particular
on the conditional quantile function for αϵ (0, 1) :

qα (X1, . . . , Xn) = F−1
Y |X1,...,Xn

(α|x1, . . . , xn) (3.2)

Using the probability integral transforms

F−1
Y |X1,...,Xn

(α |x1, . . . , xn ) = F−1
Y (C−1

V |U1,...,Un
(α |u1, . . . , un )) (3.3)

Now, we can obtain an estimate of the conditional quantile function by estimating the marginal Fy

and Fj ; j = 1, . . . , n. as well as the copula CV |U1,...,Un
and plugging them into bellow Equation

q̂α (X1, . . . , Xn) =
̂F−1

Y |X1,...,Xn

(
̂C−1

V |U1,...,Un
(α |û1, . . . , ûn )

)
. (3.4)

For more details see [7].

4 Analysis
For investigating the effect of three input data on three well known indices, the regression model of
D-Vine Copula is implemented. First, for time series data, we need to remove the serial dependence
which is present in each component. This will be accomplished by using standard univariate
financial time series models such as the class of GARCH models. For each of variables, we fit a
GARCH(1,1) model with standardized student’s t-distribution innovation. Therefore, we use the
cumulative distribution function of the standardized Student’s t-distribution to define the copula
data as probability integral transform. First, before fitting D-vine copula, we investigate the
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pairwise dependencies among the representatives of each variables. From the contour shapes, we
observe the evidence of negative correlation between news and three indices of U.S exchange markets
and a high positive correlation between three indices of U.S exchange markets and also very low
correlation exists between financial news and number of deaths. We investigated three D-vine
regression specifications. In each model, response variable is one of three indices of U.S exchange
markets (S&P 500, NASDAQ 100, Dow Jones) and predictive variables are the number of cases,
deaths and financial news. Parameters are estimated using the sequential estimation method. Table
1 demonstrates the selected covariates and their ranking order in the D-vine, the copula families
associated to each trees, sequential parameters estimates, as well as implied Kendall’s tau (allowing
for all implemented pair copula families), and log –likelihood values for each models.

Table 1

D-vine order: S&P500| deaths, cases, news
1−− > S.P, 2−− > case, 3−− > dead, 4−− > news

tree edge copula par par2 tau log − likelihood

1 1,3 t 0.026 3.077 0.017 1.57
1 3,2 bb6 1.5 1.1 0.278 14.18
1 2,4 bb8 1.12 0.99 -0.058 0.78
2 1,2:3 bb8 7.22 0.16 -0.122 2.01
2 3,4;2 bb8 1.1 1.0 -0.046 0.88
3 1,4;2,3 bb8 1.11 0.99 -0.053 0.73

Log-lik= -2.49, Aic = 24.21,Bic = 49.37

D-vine order: NASDAQ100| news, deaths, cases

1−− > NASDAQ, 2−− > case, 3−− > dead, 4−− > news

selected covariates, implied Kendall’s tau and log–likelihood values for each model As you can
see, all the predictive variables are included in D-Vine regression model meaning that all three
input variables are effective on response variables (three indices).

5 Discussion

Ultimately, it can be inferred that all the predictive variables are included in D-Vine regression
model which implies that all three input variables are effective on response variables (three indices).
the findings indicate that the fitted quantile curves of all input variables suggest that number of
death has the most negative effect on S&P500 and Dow Jones and the variable news has the
most negative influence on NASDAQ100 and also intuitively it can be concluded that variable D
(GDP news) and B (recession) then F (pay check) have the most effect on all mentioned indices
respectively.
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Abstract

One of the basic methods of constructing the copula function is to use the bivariate survival
function. In this article, using the copula function and taking into properties of distortion
functions, a family of distribution functions is introduced and its characteristics are investigated.
In the following, using the introduced distribution function, a bivariate survival function is
presented and based on it, a family of copula functions is introduced.
Keywords: Copula Function , Distortion Function, Dependence Structure, Dependence
Measures.

1 Introduction
One of the most important tools for linking two random variables is the copula functions. These
functions that used to link the univariate marginal distribution functions and their corresponding
common distribution function, first introduced in [9]. Sklar’s theorem proves the existence of a
unique copula that captures the dependence structures among continuous random variables. These
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functions have many applications in the field of probability and statistics . The most important
and complete references for studying the copulas, their features, and applications are [8] and [6].

Distortion functions aimed at converting standard distribution functions for the premium
calculation was introduced by [11] and [10] are useful tools in generalizing of standard distribution
functions. Distorted measures have been used in pricing of insurance contracts for a long time. [3]
showed that distortion is a well known premium calculation principle for insurance contracts.

In the following, the definition of the copula and distortion functions and its basic features as
well as some concepts required in the article are stated.
Definition 1. A function C : [0, 1]2 → [0, 1] is a copula function if for all u, v ∈ [0, 1], the following
properties hold:

i) C(u, 0) = C(0, v) = 0.

ii) C(u, 1) = u, C(1, v) = v.

iii) For every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2, we have
C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Definition 2. A continuous increasing function g : [0, 1] −→ [0, 1] such that g(0) = 0 and g(1) = 1
is called distortion function.

The most famous measures of dependence are Kendall’s τ , Spearman’s ρ, Blomqvist’s β, and
Gini’s γ, which are defined as follows according to copula function C(u, v) (see [8]).
Definition 3. Let C(u, v) be a copula function. The measure of dependence for it are:

τC = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1

= 1− 4

∫ 1

0

∫ 1

0

∂C(u, v)

∂u

∂C(u, v)

∂v
dudv, (1.1)

ρC = 12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3, (1.2)

βC = 4C(
1

2
,
1

2
)− 1, (1.3)

γC = 4[

∫ 1

0
C(u, 1− u)du−

∫ 1

0
[u− C(u, u)]du]. (1.4)

In this paper, we present a new family copula based on the distortion distribution and examine
its features. For this purpose, we first introduce a family of univariable distortion distributions
and study its reliability features such as hazard rate function and aging intensity. Then, based on
this family, we introduce a family of bivariate distributions and examine its characteristics. In the
following, using the bivariate distribution family, we define a new copula function and state some
dependence structure for it.
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2 Main results
2.1 A family of bivariate distributions
In this section, we first introduce a family of distribution functions and then present a family of
bivariate distributions based on it. For this aim, we know tha if C(u, v) be a copula function, then
for every ξ ∈ (0, 1] the function gξ(t) = C(ξ,t)

ξ for all t ∈ [0, 1] is a distortion, because gξ(0) = 0 and
gξ(1) = 1 and also

g
′
ξ(t) =

∂gξ(t)

∂t
=
∂C(ξ, t)

ξ∂t
= P [V ≤ t|U = ξ] ≥ 0,

therefore gξ(t) is increasing. See [7]. In the following, we provide a new family of distribution.

[1] introduced a new practical way of generating comprehensive copula. One of the copula
presented by him is,

C(u, v) = uv exp{η(1− u)(1− v)}, |η| ≤ 1. (2.1)

[2] and [4] have also presented interesting results by studying copula (2.1) and examining its
properties.

It is simply clear that, considering the copula (2.1), the function

gξ(t) = t exp[η(1− ξ)(1− t)], (2.2)

is a distortion function. Now, using this distortion function, we introduce a family of univariate
distributions.

Proposition 2.1. Let in distortion function (2.2) for negative η, put −θ = η(1 − ξ). Then, we
have

g(t) = t exp{−θ(1− t)}, 0 ≤ t ≤ 1. (2.3)

It is explicit (2.3) is a increasing and convex function. Also (2.3) is a distortion function with
g(0) = 0 and g(1) = 1. Now if F (.) be a distribution function of a random variable then for
t = F (x),

Fg(x) = g(F (x)) = F (x) exp(−θF̄ (x)), (2.4)

is named the distorted distribution function of distribution function F (x) and also Fg(x) is the
lifetime of the parallel system introduced above.

It is clear that by changing distribution F (.), a new distorted distribution is produced.
Therefore, (2.4) is a general form of a family distorted distributions and, it can be concluded
that S(t) = 1−Fg(t) is a survival function. Note that S(t) is the survival function of the univariate
distortied distribution.
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2.1.1 Reliability index

Some reliability indicators such as hazard function, ageing intensity for (2.4) are described below.
Remark 2.2. Let X be a random variable with distribution function (2.4). Then the hazard rate
function of X consists of

hg(t) =
fg(t)

F̄g(t)
=
f(t) exp(−θF̄ (t))(1 + θF (t))

1− Fg(t)
.

Jiang et al. (2003) showed that the representation of aging of a system by failure rate is
qualitative, and accordingly, they introduced a new notion called aging intensity (AI). Let X be
a absolutely continuous random variable with the distribution function F . The AI for X at time
t, denoted by LX(t), is defined by LX(t) = hX(t)

HX(t) , where HX(t) = 1
t

∫ t
0 hX(x)dx is the hazard rate

average.
Remark 2.3. Let X be a random variable with distribution function (2.4). Then the AI of X
consists of

Lg(t) =

f(t) exp(−θF̄ (x))(1+θF (t))
1−Fg(t)∫ t

0
f(x) exp(−θF̄ (x))(1+θF (x))

1−Fg(x)
dx
.

Due to the complex shape of the presented distortion distribution, it is not possible to analyze
the behavior of the hazard rate function and the AI of this distribution analytically, and for this,
it is necessary to use its graph and application software.

2.2 A family of copula functions

One of the methods of constructing bivariate distributions is to use the univariate survival function.
For this purpose, using model (2.4), we introduce a bivariate survival model and study its
characteristics.

Proposition 2.4. Let S(t) be continuous survival function of model (2.4). In this case, for
t = x+ y + αxy, α ∈ [0, 1], θ ≥ 0 the function R : [0,∞]2 −→ [0, 1], defined by

R(x, y) = S(x+ y + αxy)

= 1− F (x+ y + αxy) exp(−θF̄ (x+ y + αxy)), (2.5)

is a family of bivariate survival function.

Proof. Considering the conditions of bivariate survival functions, stated in Joe (2014), R(0, 0) = 1,
R(x,∞) = R(∞, y) = R(∞,∞) = 0, and R(x, y) applies to the rectangle inequality if ∂2R(x,y)

∂x∂y ≥ 0.
It can be easily written that R(x, 0) = P (X > x, Y > 0) = S(x) and R(0, y) = P (X > 0, Y > y) =
S(y).
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Now, using the Sklar’s theorem, we obtain the family of copula function based on proposed
bivariable distribution and calculate the dependence coefficients for it. For this purpose, we have

R(x, y) = Ĉ(S(x), S(y)), (2.6)

where Ĉ(·, ·) is the survival copula. By using the transformations u = S(x) and v = S(y), in view
of Sklar’s theorem, we have

Ĉ(u, v) = R(S−1(u), S−1(v)), u, v ∈ (0, 1).

Let ψ(t; θ) = lnS(t) = ln[1 − F (t) exp(−θF̄ (t))], which is a decreasing function with ψ(0) = 0

and its derivative ψ′(t) = −(1+θF (t))f(t) exp(−θF̄ (t))
1−F (t) exp(−θF̄ (t))

is a monotone function. Thus it can be written
as u = S(t) = exp(ψ(t)) and

S−1(u) = ψ−1(ln(u)).

As a result

Ĉ(u, v) = R(ψ−1(ln(u)), ψ−1(ln(v)), u, v ∈ (0, 1), (2.7)

and thus

Ĉ(u, v) = 1− F (ψ−1(ln(u)) + ψ−1(ln(v)) + αψ−1(ln(u))ψ−1(ln(v)))

× exp{−θF̄ [ψ−1(ln(u)) + ψ−1(ln(v)) + αψ−1(ln(u))ψ−1(ln(v))]}. (2.8)

According to the relationship between copula and survival copula functions Ĉ(u, v) = u+ v − 1 +
C(1− u, 1− v) presented in [8], the copula corresponding to (2.8) is given by

C(u, v) = u+ v − F (ψ−1(ln(1− u)) + ψ−1(ln(1− v))

+αψ−1(ln(1− u))ψ−1(ln(1− v)))

× exp{−θF̄ [ψ−1(ln(1− u)) + ψ−1(ln(1− v))

+αψ−1(ln(1− u))ψ−1(ln(1− v))]}. (2.9)

We call the copula function (2.9) as the distortion family of copula and denoted by DFC.

2.3 Some measures of dependence

Now, to investigate the behavior of DFC, we derive some nonparametric measure of dependence
for this model using the definition 3 in Section 1.
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Proposition 2.5. If (X,Y ) is a random vector with corresponding DFC, then the measures of
dependence for (X,Y ) with DFC are given below:

τDFC =1− 4

∫ 1

0

∫ 1

0
{1− ∂K(u, v)

∂u
f(K(u, v)) exp[−θF̄ (K(u, v))](1 + θF (K(u, v)))}

× {1− ∂K(u, v)

∂u
f(K(u, v)) exp[−θF̄ (K(u, v))](1 + θF (K(u, v)))}dudv,

where K(u, v) = ψ−1(ln(1− u)) + ψ−1(ln(1− v)) + αψ−1(ln(1− u))ψ−1(ln(1− v))),

ρDFC =12

∫ 1

0

∫ 1

0
{u+ v − F (ψ−1(ln(1− u)) + ψ−1(ln(1− v))

+ αψ−1(ln(1− u))ψ−1(ln(1− v)))

× exp{−θF̄ [ψ−1(ln(1− u)) + ψ−1(ln(1− v))

+ αψ−1(ln(1− u))ψ−1(ln(1− v))]}dudv − 3,

γDFC =4

∫ 1

0
{1− F (ψ−1(ln(1− u)) + ψ−1(ln(u))

+ αψ−1(ln(1− u))ψ−1(ln(u)))

× exp{−θF̄ [ψ−1(ln(1− u)) + ψ−1(ln(u))

+ αψ−1(ln(1− u))ψ−1(ln(u))]}du,

+ 4

∫ 1

0
{u− F [2ψ−1(ln(1− u)) + α(ψ−1(ln(1− u)))2]

× exp{−θF̄ [2ψ−1(ln(1− u)) + α(ψ−1(ln(1− u)))2]}du

βDFC =3− 4F (ψ−1(ln(
1

2
)) + ψ−1(ln(

1

2
)) + αψ−1(ln(

1

2
))ψ−1(ln(

1

2
)))

× exp{−θF̄ [ψ−1(ln(
1

2
)) + ψ−1(ln(

1

2
)) + αψ−1(ln(

1

2
))ψ−1(ln(

1

2
))]}.

In the following examples, considering some special distributions, we introduce some new copula
functions.
Example 2.6. Let X be a exponential random variable with parameter λ. Using relations (2.4)
and (2.9), a new copula can be written as follows, and we call it distortion exponential copula.

Cλ(u, v) = u+ v − [1− exp{−λ(ψ−1(ln(1− u)) + ψ−1(ln(1− v))

+αψ−1(ln(1− u))ψ−1(ln(1− v)))}] exp{−θ exp[−λ(ψ−1(ln(1− u))

+ψ−1(ln(1− v)) + αψ−1(ln(1− u))ψ−1(ln(1− v)))]}.
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Example 2.7. Let X be a weibull random variable with shape parameter η and scale parameter
β. Using relations (2.4) and (2.9), a new copula can be written as follows, and we call it distortion
exponential copula.

Cη,β(u, v) = u+ v − [1− exp{−(
K(u, v)

β
)η}] exp{−θ exp(−(

K(u, v)

β
)η)},

where in

K(u, v) = ψ−1(ln(1− u)) + ψ−1(ln(1− v)) + αψ−1(ln(1− u))ψ−1(ln(1− v))).

3 Conclusions
In this article, we introduced the new family of distortion distribution and studied its reliability
properties. Then we presented a new class of bivariate distributions and so on offered new family
of copula functions and its properties based on bivariate distribution. The dependence structure
of this family of copulas, as well as the tail dependence for it, has been studied. Some measures of
dependency were also obtained for the introduced copula.
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Abstract

Mutual information can be rewritten based on the copula density and considered as a
dependency measure. In this paper, a semiparametric estimation of this measure based on
the probit transformation method is presented. A simulation study is performed to measure the
accuracy of the estimators on elliptical copulas. The simulation results show that the suggested
method has better performance than beta kernel and Bernstein methods.
Keywords: Mutual information, Copula density, Probit transformation.

1 Introduction
Understanding and modelling dependence in multivariate relationships has a pivotal role in scientific
investigations. Pearson’s coefficient measures linear correlation under the assumption of normality
of the marginal distributions. These conditions are not always provided and Spearman’s rho and
Kendall’s tau coefficients are used instead.
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On the other hand, divergence measures are also used to measure the dependence between
variables. Relative entropy, also known as Kullback–Leibler divergence, is derived from information
theory and was originally introduced as a measure of the deviation of two probability distributions.
Mutual information (MI) is a special case of relative entropy. Its original definition is based on the
Kullback–Leibler (KL) divergence between the joint density of the random vector and the product
of marginal densities.

Copulas provide a useful way to model different types of dependence structures explicitly.
Instead of having one correlation number that encapsulates everything known about the dependence
between two variables, copulas capture information on the level of dependence. Student-T (T)
copula is a useful distribution in the elliptical copula class. Demarta and McNeil [3] showed that T
copula is generally superior to the Gaussian copula in the context of modelling multivariate financial
return data, because this copula able to capture the tail dependence among extreme values.

Mutual information can be written as a function of the copula density and thus does not depend
on its marginal distributions. Ma and Sun [5] introduced the concept of copula entropy by combining
MI and the copula density. They demonstrated that the MI is equal to the negative of copula
entropy. This measure was considered as a measure of multivariate association by Blumentritt and
Schmid [1]. They provided the MI based on the Gaussian and T copulas. Recently, Mohammadi
et al. [6] used copula based Jeffrey and Hellinger divergences as dependence measures. They show
that the copula based Hellinger distance performs better than Kullback-Libeler divergence for small
sample size or weak dependence.

Statistical estimation of mutual information has been considered by various authors. This paper
deals with the semiparametric estimation of the MI based on copula density. Therefore, no marginal
densities have to be estimated. Estimation is performed by kernel-based methods. In this paper,
we focus on the local likelihood probit-transformation (LLPT ) method, which is the most recent
method for copula density estimation. This method is used by Mohammadi et al. [7] for testing
bivariate independence based on alpha-divergence. We compare the bias and root mean squared
error (RMSE) of the corresponding estimators of MI using Monte Carlo simulation.

This paper provides a general framework for estimating the copula-based mutual information
for T copula. These method is based on improved probit transformation method for copula density
estimation. The rest of the paper is arranged as follows. In Section 2, the preliminaries for
copula function copula density estimation using local likelihood probit transformation method are
described. A semiparametric estimation of copula based mutual information for Gaussian and T
copulas is provided in Section 3. In Section 4, a simulation study is performed to measure the
accuracy of the suggested estimators.

2 Copula function
Some definitions related to a copula functions will be briefly reviewed based on Nelsen [9]. Let
(X,Y ) be a continuous random variable with joint cumulative distribution function (CDF) F , then
copula C corresponding to F defined as:

F (x, y) = C(FX(x), FY (y)), (x, y) ∈ R2, (2.1)
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where FX and FY are the marginal CDFs of X and Y , respectively. A bivariate copula function
C is the CDF of random vector (U, V ), defined on the unit square [0, 1]2, with uniform marginal
distributions as U = FX(X) and V = FY (Y ).

The authors shall write C(u, v; θ) for a family of copulas indexed by the parameter θ. If
C(u, v; θ) is an absolutely continuous copula distribution on [0, 1]2, then its density function is
c(u, v; θ) = ∂2C(u,v;θ)

∂u∂v . As a result, the relationship between the copula density function (c) and
the joint density function fX,Y (·, ·) of random vector (X,Y ) according to equation (2.1) can be
represented as

fX,Y (x, y) = c(FX(x), FY (y); θ)fX(x)fY (y), (x, y) ∈ R2, (2.2)

where fX(·) and fY (·) are the marginal density functions of X and Y , respectively.

2.1 Copula density estimation

The estimation of the copula density is needed to estimate the copula based mutual information.
A specific class of nonparametric copula density estimators is kernel estimators. Charpentier et
al. [2] presented different approaches to non-parametric estimation of the copula density such as
mirror-reflection method, beta kernel, and transformation technique. In this paper, local likelihood
probit-transformation (LLPT ) method is used to estimate the copula density suggested by Geenens
et al. [4]. This method yields very good and easy to implement estimators and fixing boundary
issues. The simple idea in LLPT method is to transform the domain of data to R2. Then, standard
kernel techniques can be used to estimate the density in R2. Therefore a back-transformation yields
an estimate of the copula density.

Let (Ui, Vi)i=1,...,n are independent and identically distributed observations from the bivariate
copula C. Then (Si, Ti) = (Φ−1(Ui),Φ

−1(Vi)) is a random vector with Gaussian margins and copula
C. Thus, according to (2.2), an estimation of the copula density function can be given by

ĉ(PT )
n (u, v) =

f̂n(Φ
−1(u),Φ−1(v))

ϕ(Φ−1(u))ϕ(Φ−1(v))
, (u, v) ∈ (0, 1)2. (2.3)

In LLPT method f̂n in (2.3) estmatted using locally fited a polynomial to the log-density of the
transformed sample. Recently, Nagler [8] with a comprehensive simulation study has shown that
LLPT method for copula density estimation yields very good. When the underlying density is on
[0, 1]2, the performance of the kernel estimator depends on the choice of the kernel function and
the bandwidth (smoothing parameter). For bandwidth choice, a practical approach is to consider
the minimization of the AMISE on the level of the transformed data; see [4].

Gaussian (Normal) and Student-T (T) copulas belong to the Elliptical copula class. These
copulas are very useful in financial data analysis.
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2.2 Gaussian copula
The bivariate Gaussian copula can be constructed using a bivariate standard normal distribution
and applying the of Sklar’s theorem. The bivariate Gaussian copula with parameter ρ defined as:

CG(u, v; ρ) = Φ2(Φ
−1(u),Φ−1(v); ρ)

=

∫ u

0

∫ v

0
cG(s, t; ρ)dsdt, , (u, v) ∈ [0, 1]2, ρ ∈ [−1, 1],

where Φ2 is the bivariate normal distribution function with zero mean vector, unit variances, and
correlation ρ and Φ−1 denotes the quantile function of the univariate standard normal distribution.
Moreover, cG is the corresponding Gaussian copula density that using (2.2) can be expressed as

cG(u, v; ρ) =
1

ϕ(Φ−1(u))ϕ(Φ−1(v))
√
1− ρ2

× exp
{2ρΦ−1(u)Φ−1(v)− ρ2(Φ−1(u)2 +Φ−1(v)2)

2(1− ρ2)

}
,

where (u, v) ∈ [0, 1]2, ρ ∈ [−1, 1],, and ϕ denotes the density of univariate standard normal
distribution.

2.3 Student’s t copula
The random variables (X,Y ) has bivariate standard Student’s t distribution with correlation
parameter ρ and ν > 0 degree of freedom (df) if its density is given by

ft(x, y; ρ, ν) =
Γ(ν+2

ν )(1− ρ2)−1/2

Γ(ν2 )νπ

(
1 +

1

ν

x2 − 2xyρ+ y2

1− ρ2
)− ν+2

2 . (2.4)

The contour lines for a bivariate Gaussian as solid lines with ρ = 0.8 and a bivariate standard
Student’s t distribution as dotted lines with ρ = 0.8, ν = 3 (left panel) and ρ = 0.8, ν = 30 (right
panel) are given in Figure 1. We see that for small contour levels, the bivariate standard Student’s t-
density is larger than the bivariate standard Gaussian density, thus the bivariate standard Student’s
t distribution has heavier tails than the bivariate standard Gaussian distribution. As the degree
of freedom increases, the contour lines of bivariate standard Gaussian and standard Student’s
distributions get closer together.

The bivariate Student’s t (T) copula can be constructed using the bivariate standard Student’s
t distribution with ν degrees of freedom, correlation ρ as in equation (2.4) and is given as

CT (u, v; ρ, ν) = T2,ν(T
−1
ν (u), T−1

ν (v); ρ)

=

∫ u

0

∫ v

0
cT (s, t; ρ, ν)dsdt, , (u, v) ∈ [0, 1]2, ρ ∈ [−1, 1], ν > 0.

where T2,ν is the bivariate Student’s t distribution function with zero mean vector, unit variances,
and correlation ρ and degrees of freedom ν. Moreover, T−1 denotes the quantile function of a
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Figure 1: Bivariate contour lines for bivariate normal (solid lines) with ρ = .8 and
bivariate standard Student’s t (dotted lines) with ρ = 0.8, ν = 3 (left panel) and ρ =
0.8, ν = 30 (right panel)

standard Student’s t distribution. We also give the expression of the bivariate T copula density
function cT as follows:

cT (u, v; ρ, ν) =
ft(T

−1
ν (u), T−1

ν (v); ρ, ν)

tν(T
−1
ν (u))tν(T

−1
ν (v))

.
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Figure 2: behavior of T copula with respect to parameters ρ and ν

The behavior of T copula with respect to parameters ρ and ν is presented in Figure 2. The
lower and upper tail dependence for T copula with zero correlation parameter (ρ = 0) and two
and five degrees of freedom (ν = 2, 5) are equal to 0.182 and 0.05, respectively. In T copula with
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positive dependency and small degrees of freedom (ν < 10) tail dependency occurs in both lower
and upper tails and as the degree of freedom increases, dependency in the tail areas decreases.

3 Estimation of copula based mutual information
The idea of divergence measure has been widely employed in probability, statistics, information
theory, and related fields. Kullback-Leibler (KL) divergence is a non symmetrical measure of the
distinction between two probability density functions f1 and f2 defined as

KL(f1 ∥ f2) =
∫ ∞

−∞
f1(x) log

f1(x)

f2(x)
dx, α > 0, α ̸= 1.

This divergence is nonnegative, and KL(f1 ∥ f2) = 0 if and only if f1(x) = f2(x).
The KL divergence between the joint density function and the product of marginal density

functions is equivalent to mutual information (MI). The MI using equation (2.2) can be written as

MI(X,Y ) = KL(f ∥ fXfY )

=

∫
R2

f(x, y) log
( f(x, y)

fX(x)fY (y)

)
dxdy

=

∫
[0,1]2

c(u, v) log c(u, v) dudv

= E
(
log c(U, V )

)
. (3.1)

Blumentritt and Schmid [1] demonstrated the general form of the mutual information in (3.1)
for Gaussian copula as

MI(X,Y ) = −1

2
log(1− ρ2).

Also, they provided mutual information for T copula as

MI(X,Y ) =− 1

2
log(1− ρ2) + 2 log

(√ ν

2π
β(

1

2
,
ν

2
)
)

− 2 + ν

ν
+ (1 + ν)

[
ψ(
ν + 1

2
)− ψ(

ν

2
)
]
,

where β(a, b) = Γ(a)Γ(b)
Γ(a+b) is the Beta function and and ψ(a) = ∂

∂a ln Γ(a) is the digamma function.
Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be a random sample of size n from a pair (X,Y ). We consider

plug-in estimators of the copula-based mutual information as

M̂I(X,Y ) =
1

n

n∑
i=1

log ĉn(Ũi, Ṽi). (3.2)

To estimate the copula density ĉn in (3.2), we use the LLPT method. We call this estimator
semiparametric because we use pseudo observations in the estimation of U and V as Ũi =
nF̂X(xi)/(n + 1), Ṽi = nF̂Y (yi)/(n + 1) for i = 1, · · · , n where F̂X and F̂Y are the empirical
cumulative distribution function of the observation Xi and Yi, respectively.
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4 Simulation study

A simulation study is performed to evaluate the finite sample properties of the suggested estimator
for copula based mutual information. We consider the beta kernel and Bernstein methods in [1]
to compare with the LLPT method for copula density estimation. The data are generated from
Gaussian and T (ν = 2, 10, 50) copulas with different Kendall’s tau (τ = 0.2, 0.5, 0.8). The accuracy
of estimators according to (3.2) are compared by 1000 Monte Carlo samples in terms of bias and
root of mean square error (RMSE). The bias and RMSE of estimators are presented in Table 1 and
2 for sample sizes 50 and 200, respectively.

Simulation results show that estimated Bias and RMSE of mutual information decrease as
sample size increases. By increasing Kendall’s tau, Bias of mutual information decrease and RMSE
of mutual information increases. Errors do not have a monotone behavior with respect to the degree
of freedom in T copula. In general, the LLPT method has the best performance compared to the
beta kernel and Bernstein methods in estimating mutual information. It can also be seen that the
accuracy of the Bernstein method is better than the beta kernel method.

Table 1: Bias and RMSE of estimators for sample size 50

Copula Kendall’s tau Beta kernel Bernstein LLPT
Bias RMSE Bias RMSE Bias RMSE

Gaussian 0.2 0.1105 0.0204 0.1064 0.0159 0.1018 0.0152
0.5 0.0901 0.0275 0.0845 0.0238 0.0836 0.0219
0.8 0.0890 0.0276 0.0837 0.0266 0.0798 0.0253

T(ν = 2) 0.2 0.1069 0.0220 0.1031 0.0208 0.1023 0.0177
0.5 0.0995 0.0334 0.0949 0.0322 0.0933 0.0290
0.8 0.0914 0.0369 0.0872 0.0345 0.0858 0.0328

T(ν = 10) 0.2 0.1153 0.0231 0.1096 0.0202 0.1075 0.0165
0.5 0.1010 0.0306 0.0971 0.0305 0.0924 0.0249
0.8 0.0929 0.0379 0.0869 0.0350 0.0847 0.0291

T(ν = 50) 0.2 0.1059 0.0225 0.1035 0.0205 0.1034 0.0193
0.5 0.0936 0.0294 0.0884 0.0303 0.0857 0.0253
0.8 0.0906 0.0335 0.0864 0.0311 0.0832 0.0284

5 Conclusion

In this paper, a semiparametric estimation of copula-based mutual information using the LLPT
method was suggested. This measure for Gaussian and T copulas on elliptical copula class was
provided. The simulation results showed that the suggested estimator outperforms than beta kernel
and Bernstein methods.



Mohammadi, M., Hashempour, M., Emadi, M. 51

Table 2: Bias and RMSE of estimators for sample size 200

Copula Kendall’s tau Beta kernel Bernstein LLPT
Bias RMSE Bias RMSE Bias RMSE

Gaussian 0.2 0.0647 0.0120 0.0629 0.0094 0.0584 0.0052
0.5 0.0543 0.0161 0.0497 0.0134 0.0466 0.0092
0.8 0.0495 0.0178 0.0467 0.0158 0.0441 0.0142

T(ν = 2) 0.2 0.0593 0.0100 0.0571 0.0084 0.0539 0.0060
0.5 0.0528 0.0155 0.0504 0.0149 0.0456 0.0128
0.8 0.0356 0.0236 0.0322 0.0191 0.0272 0.0155

T(ν = 10) 0.2 0.0621 0.0130 0.0621 0.0093 0.0603 0.0058
0.5 0.0565 0.0190 0.0543 0.0148 0.0502 0.0106
0.8 0.0487 0.0200 0.0468 0.0172 0.0452 0.0132

T(ν = 50) 0.2 0.0701 0.0112 0.0670 0.0105 0.0633 0.0070
0.5 0.0558 0.0178 0.0521 0.0131 0.0477 0.0121
0.8 0.0471 0.0250 0.0460 0.0225 0.0443 0.0186
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Abstract

The dependence of fading coefficients of wireless communication channels on each other
affects communication performances such as Outage probability (OP), coverage region, energy
efficiency, and secrecy capacity, possibly being constructive or destructive. In this paper,
the outage probability as one of the most important wireless communication performances is
investigated by using Copula theory. For this purpose, a wireless three-user multiple access
channel (MAC) with Rayleigh fading and independent sources is considered and the outage
probability in positive and negative dependence cases is compared. The results show that a
negative dependence structure reduces the outage probability (compared to the independent
state), but a positive dependence structure increases it.
Keywords: multiple access channel , Rayleigh fading, dependence, Copula theory, outage
probability

1 Introduction
According to the surveys, there are more than four billion wireless subscribers worldwide, and the
demand for wireless communication services is increasing daily, so we need to improve the methods
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of using available spectrum sources. One way to increase spectral efficiency is to use multi-user and
multi-antenna communication systems in wireless communications. Disturbances caused by radio
propagation environments always affect the performance of wireless communication systems. Fading
is one of the disturbances of wireless propagation environments. In a wireless fading channel, the
channel coefficients are interdependent random variables for which different distributions have been
proposed so far[2, 19, 23]. In recent years, there have been many studies about fading channels; in
many of these studies, the fading coefficients of wireless communication channels have been assumed
to be independent of each other.

It is essential to investigate the performance of wireless communication systems under the
influence of the dependence of channel fading coefficients.

Copula theory can be used as a valuable and powerful tool for modeling the dependence between
random variables. This theory was first introduced by Sklar in 1959 [21]. Copulas are functions that
relate the multivariate distribution function to its marginal distribution functions. Copula theory is
widely used in statistics, economics, image processing, machine learning, Internet of Things (IoT),
and engineering [4, 16, 18, 20, 24]. Also, recently, Copula theory is used to evaluate the effect
of dependence of wireless channel coefficients on wireless communication performances, including
outage probability, coverage region, energy efficiency, and secrecy capacity[8, 9, 17]. In [8], by using
Copula theory, the effect of the dependence between the Rayleigh fading channel coefficients on
the outage probability and the coverage region, two important communication performances, has
been evaluated. In [9], the investigated channel is a doubly dirty fading MAC with non-causally
known side information at transmitters; closed-form expressions for the outage probability and the
coverage region have been obtained using the Copula theory. In [17], the channel coefficients have
been considered interdependent, and a general closed-form expression has been obtained for the
outage probability assuming an arbitrary fading distribution.

The Farlie-Gumbel-Morgenstern (FGM) Copulas, first studied by Eyraud, Farlie, Gumble, and
Morgenstern [5, 6, 10, 15], are a well-known family of Copulas and have many properties [3, 7,
11, 12, 13]. This family of Copulas has a simple form, and the dependence parameter of these
Copulas includes positive and negative values and zero. Also, FGM Copulas are the simplest to
calculate joint distributions. Due to these properties, these Copulas are suitable for analyzing
wireless channels with dependent coefficients.

In this paper, we study a wireless three-user fading MAC with independent sources and coherent
receiver (the receiver knows the channel coefficients). We consider the channel coefficients to be
dependent on each other to investigate the effect of the dependence of channel coefficients on wireless
communication performances. First, we obtain a closed-form expression for the outage probability
using the FGM Copula; then, according to this closed-form expression, we investigate the effect of
the dependence of the channel coefficients on the outage probability. To this end, we compare the
outage probability in dependent and independent cases and evaluate the impact of positive and
negative dependencies on the outage probability.

The structure of this paper is as follows: Copula theory is described in sections 2.
Communication channel is described in sections 3. The outage probability is obtained in Section
4. Numerical results are in section 5 and the paper is concluded in section 6.
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2 Copula Theory
In this section, we briefly review some definitions and theorems of the Coppola theory that are
used in the following sections [16].

Definition 1. A d-dimensional Copula is a functin C : [0, 1]d → [0, 1] subject to:

• C is a grounded function, that is:

C (u1, . . . , ud) = 0; if any uj = 0, j ∈ {1, . . . , d}

• The marginals of C are uniform, that is:

C (1, . . . , 1, uj , 1, . . . , 1) = uj ; ∀ j ∈ {1, . . . , d}

• C is d-increasing on [0, 1]d , that is:

2∑
i1=1

. . .

2∑
id=1

(−1)i1+...+id C (u1i1 , . . . , udid) ≥ 0 for all 0 ≤ uj1 ≤ uj2 ≤ 1 and j ∈ {1, . . . , d} .

Theorem 2.1. Suppose F is a multivariate joint cumulative distribution function (CDF) with
marginals F1, . . . , Fd then there exists a Copula, C , such that:

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) (2.1)
If Fi; ∀i∈{1, . . . , d} is continuous, then C is unique, otherwise C is uniquely determined only on
Ran (F1) × . . . × Ran (Fd). Conversely, consider a Copula, C, and univariate CDF’s F1, . . . , Fd,
Then F defined in (2.1) is a multivariate CDF with marginals F1, . . . , Fd.

Corollary 1. The joint probability density function (PDF) corresponding to F (x1, . . . , xd) is:

f (x1, . . . , xd) = f1 (x1) . . . fd (xd) c (F1 (x1) , . . . , Fd (xd)) (2.2)

Where fi (xi) ; i∈{1, . . . , d} are the marginal PDFs of f (x1, . . . , xd) and c is the Copula density
function.

The density function of Copula C(u1, . . . , ud) is given as:

c (u1, . . . , ud) =
∂dC (u1, . . . , ud)

∂u1 . . . ∂ud
(2.3)

Definition 2. A d-dimensional FGM Copula is defined as [13]:

C (u1, . . . , ud) =

 d∏
j=1

uj

1 +

d∑
k=2

∑
1≤j1<...<jk≤d

θj1...jkuj1 . . . ujk


Where (u1, . . . , ud)∈ [0, 1]d and uj = 1− uj , j∈{1, . . . , d} (2.4)
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3 Communication Channel

We study a wireless three-user fading MAC with independent sources and coherent receiver that
the channel coefficients are dependent on each other (Figure 1).

Figure 1: A three-user wireless Rayleigh fading MAC

The received signal is:

YD = h1DX1 + h2DX2 + h3DX3 + ZD (3.1)

Where the signals sent by the first, second, and third transmitters are X1, X2 and X3,
respectively.

hiD ; i∈{1, 2, 3} are the fading coefficients of the channel between the transmitter i and the
receiver. ZD is independent identically distributed (i.i.d) Additive White Gaussian Noise (AWGN)
with zero mean and variance N .

The capacity region of a three-transmitter wireless MAC with block fading and coherent receiver
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is (extension of the capacity region of two-user MAC with independent sources [1, 14]):

R1≤
1

2
log2

(
1 +

P1 |h1|2

N

)

R2≤
1

2
log2

(
1 +

P2 |h2|2

N

)

R3≤
1

2
log2

(
1 +

P3 |h3|2

N

)

R1 +R2≤
1

2
log2

(
1 +

P1 |h1|2 + P2 |h2|2

N

)

R1 +R3≤
1

2
log2

(
1 +

P1 |h1|2 + P3 |h3|2

N

)

R2 +R3≤
1

2
log2

(
1 +

P2 |h2|2 + P3 |h3|2

N

)

R1 +R2 +R3≤
1

2
log2

(
1 +

P1 |h1|2 + P2 |h2|2 + P3 |h3|2

N

)
(3.2)

Where R1, R2 and R3 are the desired transmission rates of the first, second, and third
transmitters, respectively.

4 Outage Probability
The outage probability of a three-user wireless Rayleigh correlated fading MAC is:

Pout = 1− P c (4.1)

P c =A1 + θ12 (A1 − 2A2 − 2A3 + 4A4)

+ θ13 (A1 − 2B1 − 2A3 + 4B3)

+ θ23 (A1 − 2B1 − 2A2 + 4B2)

+ θ123 (A1 − 2A2 − 2A3 + 4A4 − 2B1 + 4B2 + 4B3 − 8B4) (4.2)

Where in the equation (4.2) we have:

A1 =
(ν1)

2 e
−T
ν1

(ν1 − ν2) (ν1 − ν3)
(4.3)

A2 =
(ν1)

2 e
−T
ν1

(2ν1 − ν2) (ν1 − ν3)
(4.4)
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A3 =
(ν1)

2 e
−2T
ν1

2 (ν1 − 2ν2) (ν1 − 2ν3)
(4.5)

A4 =
(ν1)

2 e
−2T
ν1

4 (ν1 − ν2) (ν1 − 2ν3)
(4.6)

B1 =
(ν1)

2 e
−T
ν1

(ν1 − ν2) (2ν1 − ν3)
(4.7)

B2 =
(ν1)

2 e
−T
ν1

(2ν1 − ν2) (2ν1 − ν3)
(4.8)

B3 =
(ν1)

2 e
−2T
ν1

4 (ν1 − 2ν2) (ν1 − ν3)
(4.9)

B4 =
(ν1)

2 e
−2T
ν1

8 (ν1 − ν2) (ν1 − ν3)
(4.10)

In the above equations, ν1, ν2, and ν3 are the average signal-to-noise ratios (SNR) at
transmitters t1, t2, and t3, respectively and T = 22R0 − 1 that R0 represents the total required
threshold information rates.

Proof. Outage probability is the probability that the information rate is greater than the
random capacity of the channel or less than a required threshold information rate. According to
this definition and considering that any of the inequalities in equation (3.2) can be used to calculate
the outage probability, we have:

Pout = Pr (R1 +R2 +R3≤R0) (4.11)
= 1− Pr (R1 +R2 +R3 > R0) (4.12)
= 1− P c (4.13)

Where P c is the complement of the outage probability.

P c = Pr

(
1

2
log2

(
1 +

P1 |h1|2 + P2 |h2|2 + P3 |h3|2

N

)
> R0

)
(4.14)

= Pr

(
P1 |h1|2 + P2 |h2|2 + P3 |h3|2

N
> 22R0 − 1

)
(4.15)

= Pr (ν1 + ν2 + ν3 > T ) (4.16)

=

∫ ∞

0

∫ ∞

0

∫ ∞

T −ν2−ν3

f (ν1, ν2, ν3) dν1dν2dν3 (4.17)

Where ν1, ν2 and ν3 are SNRs at transmitters t1, t2, and t3, respectively and we have:

νi =
Pi |hi|2

N
; i ∈ {1, 2, 3} (4.18)
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f (ν1, ν2, ν3) in equation (4.17) is the joint PDF of ν1, ν2 and ν3, and we can calculate it
according to equation (2.2)

f (ν1, ν2, ν3) = f1 (ν1) f2 (ν2) f3 (ν3) c (F1 (ν1) , F2 (ν2) , F3 (x3)) (4.19)

Where f (νi) ; i∈{1, 2, 3} and F (νi) ; i∈{1, 2, 3} are PDFs and CDFs of νi; i∈{1, 2, 3},
respectively and c (F1 (ν1) , F2 (ν2) , F3 (x3)) is the density function of three-dimensional FGM
Copula.

The channel coefficients, hi; i∈{1, 2, 3}, have a Rayleigh distribution, so |hi|2 ; i∈{1, 2, 3} and
consequently νi; i∈{1, 2, 3} have an exponential distribution.

f (νi) =
1

νi
exp

(
−νi
νi

)
; i∈{1, 2, 3} (4.20)

F (νi) = 1− exp

(
−νi
νi

)
; i∈{1, 2, 3} (4.21)

Now we calculate c (F1 (ν1) , F2 (ν2) , F3 (x3)). Considering d = 3 in equation (2.4), three-
dimensional FGM Copula is obtained as:

C (u1, u2, u3) = u1u2u3 (1 + θ12u1u2 + θ13u1u3 + θ23u2u3 + θ123u1u2u3) (4.22)

Where ui = 1 − ui; i∈{1, 2, 3} and θ12, θ13, θ23 and θ123 are the FGM Copula parameters.
According to (2.3) and (4.22), the density function of the three-dimensional FGM Copula is:

c (u1, u2, u3) = 1 + θ12 (1− 2u1) (1− 2u2)

+ θ13 (1− 2u1) (1− 2u3)

+ θ23 (1− 2u2) (1− 2u3)

+ θ123 (1− 2u1) (1− 2u2) (1− 2u3) (4.23)

Now according to (4.19), (4.20) and (4.23), f (ν1, ν2, ν3) is obtained as follows:

f(ν1, ν2, ν3) =
e
− ν1

ν1
− ν2

ν2
− ν3

ν3

ν1ν2ν3

[
1 + θ12

(
1− 2e

− ν1
ν1

)(
1− 2e

− ν2
ν2

)
+ θ13

(
1− 2e

− ν1
ν1

)(
1− 2e

− ν3
ν3

)
+ θ23

(
1− 2e

− ν2
ν2

)(
1− 2e

− ν3
ν3

)
+ θ123

(
1− 2e

− ν1
ν1

)(
1− 2e

− ν2
ν2

)(
1− 2e

− ν3
ν3

)]
(4.24)

By putting (4.22) in (4.17), it is easy to calculate the triple integral and the outage probability
is obtained as (4.2)-(4.10) and the proof is complete.
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5 Numerical Results
Numerical results are presented in this section. According to these results, we can investigate the
effect of positive and negative dependencies on the outage probability performance.

In Figure 2, the outage probability is plotted in terms of average SNR. According to this figure,
as the SNR increases, the channel condition improves, so the outage probability decreases. Also,
we see that the negative dependence structure reduces the outage probability compared to the
independent case, which means an improvement in the outage probability performance.

Figure 2: Outage probability versus average SNR

Conversely, we see that the positive dependence structure increases the outage probability
compared to the independent case, that is, positive dependence has a detrimental effect on the
outage probability performance.

6 Conclusion
In this paper, wireless three-user MAC with independent sources and Rayleigh fading was
investigated. Using the FGM Copula, a closed form expression for the outage probability was
obtained. Then we analyzed the impact of positive and negative dependencies on the outage
probability performance. According to the obtained results, it is clear that negative dependence,
compared to the independent state, reduces the outage probability, while positive dependency
increases the outage probability compared to the non-dependent case.
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Abstract

The aim of this paper is to study ordering of conditional asymmetry for copulas like those
resulting from the concordance ordering for dependence. Several example provided to illustrate
the result.
Keywords: Bivariate symmetry, Conditional asymmetry, Copula, Ordering.

1 Introduction
Let (X,Y ) be a pair of continuous random variables with the joint distribution function F (x, y) =
P (X ≤ x, Y ≤ y), and univariate marginal distributions F1(x) = P (X ≤ x), F2(y) = P (Y ≤ y),
at each x, y ∈ R. Let F (y|x) = P (Y ≤ y|X = x) denote the conditional distribution of Y given
X = x. Formally, the random variable Y is conditionally symmetric given X = x if Y |X =
x is symmetric; i.e., F (y|x) = 1 − F (−y|x). In some regression and time series models, some
distributional assumptions are often imposed on the error term. One of these assumptions is the
conditional symmetry around zero of error term given the independent variables [2]. The assumption
of conditional symmetry is commonly used in adaptive estimation. Bickel [3] showed that under
conditional symmetry of error terms, adaptive estimation of the parameters in regression model
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achieve the same information bound as the maximum likelihood estimator. The existence or lack
of conditional symmetry is also important in modelling time series financial data. For example, the
symmetry of the residuals implies that positive forecasts errors to the conditional mean are as likely
as negative forecasts errors. If this is not the case, the forecasts should adjust to the possibility
that positive and negative forecasts errors are not equally likely [2]. But conditional symmetry
is equivalent to (X,Y )

d
= (X,−Y ), where d

= denotes equality in distributions or FX,Y (x, y) =
FX,−Y (x, y), for all x, y. Following Sklar’s Theorem ([5]) the joint cumulative distribution function
of X and Y can then be expressed, at each x, y ∈ R as F (x, y) = C{F1(x), F2(y)} in terms of a
unique copula C. Since many dependency characteristics of random variables can be studied by
using copulas, they play an important role in modeling the dependence structure between random
variables [4]. In practice, modelling the dependence structure of random variables, leads to the
problem of fitting an appropriate copula to a given set of data. Many families of copulas with
different dependence properties have been introduced. However, most of these copulas are unable
to incorporate a feature of the data such as conditional symmetry and, hence, are not suitable for
applications. For instance, if the error terms of a time series model has some degree of conditional
asymmetry, then conditional symmetric models are not adequate. In view of Sklar’s Theorem, the
conditional symmetry property of random variables can also be studied in terms of their associated
copula. The objective of the present work is to explore the possibility of ordering copulas by means
of their asymmetry level and study its implications. This is motivated by providing a partial answer
to this question: whether there are inequalities for conditional asymmetry of copulas, like those
resulting from the concordance ordering for dependence?

2 Proposed Asymmetry Ordering
By using transformation F1(x) = u and F2(y) = v, in view of Sklar’s Theorem, under the symmetry
of Y , i.e., F2(y) = 1− F2(−y) we have

P (Y ≤ y|X = x) = P (V ≤ v|U = u), and P (−Y ≤ y|X = x) = P (1− V ≤ v|U = u),

where (U, V ) = (F1(X), F2(Y )) is a pair of uniform [0,1] random variables. Note that P (V ≤ v|U =
u) = ∂

∂uC(u, v) and P (1 − V ≤ v|U = u) = 1 − ∂
∂uC(u, 1 − v); see, e.g., [5]. Now it is immediate

that, if Y d
= −Y , then (Y |X = x)

d
= (−Y |X = x), if and only if C(u, v) = u − C(u, 1 − v). We

will use the notion C∗(u, v) = u− C(u, 1− v). We say that a copula C is conditionally symmetric
if, C(u, v) = C∗(u, v), for all u, v ∈ [0.1]. When a copula C is conditionally asymmetric, i.e.,
C(u, v) ̸= C∗(u, v), for some u, v ∈[0,1]. For a given copula C, let Ĉ(u, v) = u+v−1+C(1−u, 1−v)
be the survival copula or reflected copula associated with C and CT (u, v) = P (U ≤ v, V ≤ u). A
copula is radially symmetric if and only if C(u, v) = Ĉ(u, v) and it is exchange symmetric if and
only if C(u, v) = CT (u, v), for all u, v ∈ [0, 1].

For two pairs (X1, Y1) and (X2, Y2) with the associated copulas C1 and C2, the pair (X1, Y1)
is said to be less dependent than the pair (X2, Y2), in the sense of concordance ordering, if
C1(u, v) ≤ C2(u, v) for all (u, v) ∈ [0, 1]2 [5]. Motivation by this definition, we provide a definition
for conditional asymmetry.
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Definition 1. For two copulas C1 and C2, the copula C2 is said to be more conditional asymmetric
than the copula C1 (denoted by C1 ≺CA C2), if and only if, for all (u, v) ∈ [0, 1]2,

| C1(u, v)− C∗
1 (u, v) |≤| C2(u, v)− C∗

2 (u, v) |, (2.1)

where C∗
i (u, v) = u − Ci(u, 1 − v). We call the ordering ≺CA as the conditional asymmetry order

for copulas.

For dependence concepts, by using the fact that for any copula C satisfies W (u, v) ≤ C(u, v) ≤
M(u, v), for all (u, v) ∈ [0, ]2, where W (u, v) = max(u + v − 1, 0) and M(u, v) = min(u, v), the
maximal and minimal members of the class of copulas are M and W , respectively. The copula M
is the dependence structure of the compelete positive dependent random variables X and Y ; i.e.,
when P (Y = f(X)) = 1, for a non-decreasing function f and W is the copula of complete negative
dependent random variables X and Y ; i.e., when P (Y = f(X)) = 1, for a non-increasing function
f . The following result shows that for asymmetry concept it is not the case. Let CA denotes the
class of conditionally asymmetric copulas.

Proposition 2.1. The smallest member of CA with respect to order ≺CA does not exist.

Proof. If C1 be a given conditional symmetric copula, then for any copula C2 we have that

0 =| C1(u, v)− C∗
1(u, v) |≤| C2(u, v)− C∗

2(u, v) |,

that is C1 ≺CA C2. If C3 is the smallest member of CA, then C3 ≺CA C1, i.e., 0 < C3(u, v) −
C∗
3 (u, v) |≤| C1(u, v)−C∗

1 (u, v) |= 0, for all u, v ∈ [0, 1] and thus C3(u, v) = C∗
3 (u, v), which means

that the minimal member of CA must be a conditional symmetric copula.

Theorem 2.2. The copulas M and W are the greatest members CA with respect to ≺CA.

Proof. For any copula C we have

| C(u, v)− C∗(u, v) ≤ min(u, v, 1− u, 1− v),

for all (u, v) ∈ [0, 1]2. Thus the the greatest element of CA with respect to ≺CA is the copula D
satisfying | D(u, v) − D∗(u, v) |= min(u, v, 1 − u, 1 − v), for all (u, v) ∈ [0, 1]2. Since M∗ = W ,
W ∗ =M and |W (u, v)−M(u, v) |=M(u, v)−W (u, v) = min(u, v, 1−u, 1−v) for all (u, v) ∈ [0, 1]2,
then we must have D =M or D =W .

Example 2.3. Let C(u, v) = uv[1+θ(1−u)(1−v)], u, v ∈ [0, 1] and θ ∈ [−1, 1], be the FGM copula.
Then | C(u, v)−C∗(u, v) |= 2uv(1−u)(1−v)|θ|. For v ≤ u and v ≤ 1−u, min(u, v, 1−u, 1−v) = v.
If u ≤ 1

2 then 2uv(1− u)(1− v) | θ |≤ v(1− u)(1− v) | θ |≤ v and if u ≥ 1
2 then 2(1− u) ≤ 1 and

2uv(1− u)(1− v) | θ |≤ uv(1− v) | θ |≤ v. Therefore 2uv(1− u)(1− v) | θ |≤ min(u, v, 1− u, 1− v)
and thus C ≺CA M and C ≺CA W .

The following results provides an invariance property for ≺CA order.

Proposition 2.4. If C1 and C2 be two copulas such that C1 ≺CA C2 then C∗
1 ≺CA C∗

2 , CT
1 ≺CA CT

2 ,
Ĉ1 ≺CA Ĉ2.
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Proof. The ordering C∗
1 ≺AC C∗

2 follows directly from definition 2.1. Since | CT (u, v)−CT ∗
(u, v) |=|

C(v, u)−v+C(v, 1−u) |, letting 1−u = t, we have that | C(v, 1−t)−v+C(v, t) |=| C(v, t)−C∗(v, t) |
and thus CT

1 ≺CA CT
2 . Similary, for |Ĉ − Ĉ

∗| = |C(1 − u, 1 − v) − (1 − u − C(1 − u, v))|, letting
1− u = t and 1− v = s, we have that | C(t, s)− (t− C(t, 1− s)) |=| C(t, s)− C∗(t, s) |, and then
Ĉ1 ≺CA Ĉ2.

3 Some Examples
In this section we provide several examples for proposed ≺AC order.

Example 3.1. Let Cα,β be the two-parameter family of copulas given by [5]

Cα,β(u, v) = uv + uv(1− u)(1− v)(α+ (β − α)v(1− u)) (3.1)

where α ∈ [−1, 1] and (α − 3 −
√
9 + 6α− 3α2)/2 ≤ β ≤ 1. Let Dα,β(u, v) =

Cα,β(u,v)+C∗∗
α,β(u,v)

2 .
Since | Dα,β(u, v)−D∗

α,β(u, v) |= uv(1− u)(1− v) | 1− 2u || β − α |, by using (2.1), it follows that
the family of copulas {Dα,β}, is ordered with respect to ≺CA if, and only if, for a fixed α and any
β1 and β2, | β1 − α |≤| β2 − α |. Similarly, for a fixed β and any α1 and α2, this family of copulas
is ordered with respect to ≺CA if, and only if, | β − α1 |≤| β − α2 |.

Example 3.2. Let K(u, v) = uv+ uv(1− u)(1− v)(12 − u) and Dα,β be the copula given by (3.1).
Then it is easy to check that K ≺CA Dα,β if and only if, | β − α |≥ 1.

Example 3.3. For two copulas C0 and C1, let Cθ(u, v) = θC1(u, v) + (1 − θ)C0(u, v), θ ∈ [0, 1],
which is always a copula [5]. Then C∗

θ (u, v) = θC∗
1 (u, v) + (1− θ)C∗

0 (u, v) and

|Cθ(u, v)− C∗
θ (u, v)| = |θ(C1(u, v)− C∗

1 (u, v) + (1− θ)(C0(u, v)− C∗
0 (u, v))|.

If C0 conditionally symmetric, i.e., C0 = C∗
0 , then Cθ is positively ordered with respect to ≺CA,

that is for θ1 ≤ θ2, Cθ1 ≺CA Cθ2 . If C1 conditionally symmetric, i.e., C1 = C∗
1 , then Cθ is negatively

ordered with respect to ≺CA, that is for θ1 ≥ θ2, Cθ1 ≺CA Cθ2 .

Example 3.4. Let Cθ(u, v) = θM(u, v)+(1−θ)W (u, v). Since C∗
θ (u, v) = θW (u, v)+(1−θ)M(u, v)

and |Cθ(u, v) − C∗
θ (u, v)| = |2θ − 1|(M(u, v) −W (u, v)), then Cθ is positively (resp, negatively)

ordered with respect to ≺CA for θ > 1
2 (resp, θ < 1

2). Note that for θ = 1
2 the copula Cθ is

conditionally symmetric.

Example 3.5. Let Cθ be the copula defined by

Cθ(u, v) = uv + θϕ(u)ϕ(v), (3.2)

where θ ∈ [−1, 1] and ϕ is a function on [0, 1] with ϕ(0) = ϕ(1) = 0 and |ϕ(u)−ϕ(v)| ≤ |u−v| for all
u, v ∈ [0, 1] [1]. Note that if ϕ(u)+ϕ(1−u) = 0 for all u ∈ [0, 1], then Cθ is conditionally symmetric,
otherwise Cθ is conditionally asymmetric. Since |(Cθ(u, v)− C∗

θ (u, v)| = |θ||ϕ(u)[ϕ(v)− ϕ(1− v)]|,
then Cθ is positively (resp, negatively) ordered with respect to ≺CA for θ > 0 (resp, θ < 0).
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Abstract
Sharpe ratio is a commonly used risk-adjusted measure for evaluating portfolio performance

in risk management. Despite of its popularity, whenever the returns are non-normal or
dependent, the calculated Sharpe index is either over or under-estimated. The aim of this
paper is to study the effect of dependence on the Sharpe ratio of a two assets portfolio by using
the copula of its returns.
Keywords: Copula, Dependence, Portfolio, Risk-adjusted measure, Sharpe ratio

1 Introduction
Sharpe ratio [5, 4] is a common tool for comparing the performance of financial assets. Multivariate
normal distribution is the commonly used model for analyzing return of financial assets. But normal
distribution restricts the dependence of returns to be linear as measured by Pearson’s correlation.
In recent years, copulas are often used to measure the dependence between return of financial assets.
Copulas separate the dependency between variables from their univariate marginal distributions.
In this way, the dependence structure can be linear, nonlinear or tail dependent. Despite the use
of copula approach to calculate many financial indices [1], little work has been done on the use of
copulas for Sharp ratio estimation. In this paper, we study the effect of dependency on the Sharpe
ratio using the copulas and compare it with the empirical method.
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2 Copula-based Sharpe ratio
Let RA and RB denote the returns of two assets A and B, respectively. Further, let Rf be the
return of a benchmark investment strategy. Define continuous random variables of X and Y as
X = RA − Rf and Y = RB − Rf . Consider univariate marginal distribution functions of X and
Y as F (x) = P (X ≤ x) and G(y) = P (Y ≤ y) for x, y ∈ R with the joint distribution function
H(x, y) = P (X ≤ x, Y ≤ y). Let T = wX + (1− w)Y , be a portfolio with dependent components
X and Y , where 0 < w < 1 is the weight of X and (1−w) is the weight of Y . The Sharpe ratio of
T is given by [5]

SRT =
wµX + (1− w)µY√

w2σ2X + (1− w)2σ2Y + 2w(1− w)σX,Y

, (2.1)

where µX = E(X), µY = E(Y ), σ2X = var(X), σ2Y = var(Y ) and σX,Y = cov(X,Y ). In this
formula, µX , µY , σ2X and σ2Y are calculated from the marginal distributions and σX,Y is associated
to the joint distribution function of X and Y . In view of the Sklar’s Theorem [9], let C be the
unique copula of the pair (X,Y ) through the relation

H(x, y) = C(F (x), G(y)), x, y ∈ R.

In fact, C is the joint distribution function of the pair (U, V ) = (F (X), G(Y )) of uniform (0,1)
random variables.

By using the Hoeffding’s identity[2] and transformations u = F (x) and v = G(y), we have

σX,Y =

∫ ∞

−∞

∫ ∞

−∞
[H(x, y)− F (x)G(y)]dxdy

=

∫ 1

0

∫ 1

0
[C(u, v)− uv]dF−1(u)dG−1(v)

=

∫ 1

0

∫ 1

0
F−1(u)G−1(v)dC(u, v)− µXµY .

Let Π denote the copula of independent random variables, i.e., Π(u, v) = uv for all (u, v) ∈
[0, 1]2, and let M and W denote the Fréchet-Hoeffding upper and lower bound copulas, respectively,
which, for any copula C, satisfy: max(u+ v − 1, 0) =W (u, v) ≤ C(u, v) ≤M(u, v) = min(u, v) for
every (u, v) ∈ [0, 1]2. We recall that M (W ) is the copula of perfect positive (negative) dependence
random variables [9]. In the following example we compute the Sharpe ratio of a portfolio with two
perfect dependence assets, having exponential distribution.

Example 2.1. Let X and Y be two exponential random variables with the means 1

λ1
and 1

λ2
. If

the copula of X and Y is M , then σX,Y = 1
λ1λ2

and the Sharpe ratio of portfolio T = wX+(1−w)Y
is then

SRT =
λ1 + (λ2 − λ1)w

|λ1 + (λ2 − λ1)w|
=


+1 if w ≥ λ1

λ1−λ2

0 if w = λ1
λ1−λ2

−1 if w < λ1
λ1−λ2

.
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If the copula of X and Y is W , then σX,Y = (1− π2

6 ) 1
λ1λ2

and the Sharpe ratio of the portfolio
T is given by

SRT =
λ1 + (λ2 − λ1)w√

(1− w)2λ22 + w2λ21 + (π
2

3 − 2)w(1− w)
.

The maximum value of SR is 6√
36−3π2

= 2.3734, which happens at λ1
λ1+λ2

.

Example 2.2. Let X and Y be two exponential random variables with the means 1

λ1
and 1

λ2
,

respectively. Let their dependence structure be the FGM copula [9] given by

Cθ(u, v) = uv[1 + θ(1− u)(1− v)], u, v ∈ [0, 1],

where −1 ≤ θ ≤ 1. Then by using (2.2) we have σX,Y =
θ

4λ1λ2
and the Sharpe ratio of the portfolio

T with the exponential returns and FGM copula structure is given by

SRT =
λ1 + (λ2 − λ1)w√

λ22w
2 + λ21(1− w)2 + w(1−w)θλ1λ2

2

. (2.2)

As a function of the weight w, the maximum value of SRT is given by SR∗
T = 2

√
2

4+θ , which happens
at w∗ = λ1

λ1+λ2
. We note that SR∗ is decreasing in θ and for θ ∈ [−1, 1], SR∗ ∈ [1.264, 1.633]. Since

θ is the dependency parameter, the value of the Sharp ratio decreases as the dependence between
components of portfolio increases.

3 Properties of copula-based Sharpe ratio
Let TCθ

= wX + (1 − w)Y be a two assets portfolio whose components (X,Y ) has the one-
parameter copula structure Cθ. In this section, we discuss some properties of the copula-based
Sharpe  ratio SR(TCθ

) =
µ(TCθ

)

σ(TCθ
) , where µ(TCθ

) = E(TCθ
) and σ(TCθ

) =
√
var(TCθ

). First note that
if the variance of returns does not depend on their expected values, then SR(TCθ

) is decreasing
(increasing) in θ, as σ(TCθ

) is increasing (decreasing) in θ. The following result compares two
portfolios with the common marginal distributions and different dependence structures.
Proposition 3.1. For i = 1, 2, let (Xi, Yi) has the copula Cθi, i = 1, 2, and E(X1) = E(X2),
var(X1) = var(X2). Then SR(TCθ1

) ≥ SR(TCθ2
), for θ1 ≤ θ2, whenever Cθ is a positively ordered

family of copulas; that is Cθ1(u, v) ≤ Cθ2(u, v), for all u, v ∈ [0, 1] and θ1 ≤ θ2.
The following result provides a lower and upper bound for Sharpe ratio of a two assets portfolio

consists of dependent returns.
Proposition 3.2. Let TC = wX + (1 − w)Y be a two assets portfolio whose components (X,Y )
has the copula structure C. Then

SR(TM ) ≤ SR(TC) ≤ SR(TW ),

where, M and W are the Fréchet-Hoeffding upper and lower bound copulas,
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Table 1: Values of the Sharpe ratio (SR) for a two assets portfolio with
various copula structure and various univariate marginal distributions

Kendall’s τ Copula θ SR SR SR
structure (Normal margins) (Beta margins) (Exponential margins)

-1 W — 1.91 17.32 2.18

-0.9
Clayton -0.94 1.86 15.20 2.07
Frank -38.28 1.88 16.32 2.16

Normal -0.98 1.89 16.67 2.17

-0.5
Clayton -0.66 1.66 9.91 1.72
Frank -5.73 1.67 9.79 1.85

Normal -0.70 1.69 10.07 1.87

-0.3
Clayton -0.46 1.55 8.17 1.56
Frank -2.91 1.54 7.89 1.64

Normal -0.45 1.56 8.00 1.66
0 Π — 1.38 6.20 1.38

0.3

Clayton 0.85 1.25 5.12 1.24
Frank 2.91 1.26 5.27 1.20

Gumbel 1.42 1.25 5.28 1.13
Normal 0.45 1.25 5.22 1.18

Joe 1.77 1.25 5.34 1.10

0.5

Clayton 2.00 1.20 4.76 1.17
Frank 5.73 1.20 4.88 1.12

Gumbel 2.00 1.20 4.89 1.06
Normal 0.70 1.20 4.83 1.09

Joe 2.85 1.20 4.97 1.04

0.9

Clayton 18.00 1.15 4.48 1.03
Frank 38.28 1.14 4.50 1.00

Gumbel 10.00 1.15 4.49 1.00
Normal 0.98 1.14 4.49 1.00

Joe 18.73 1.14 4.52 1.00
+1 M — 1.14 4.47 1.00

A copula C is said to be positive quadrant dependence (PQD) if for all (u, v) ∈ [0, 1]2, C(u, v) ≥
uv and negative quadrant dependence (NQD) if C(u, v) ≤ uv [9]. The following result compares
the Sharp ratio of a portfolio with dependent returns with the Sharp ratio of a portfolio consists
of independent returns.

Proposition 3.3. Let TC = wX+(1−w)Y be a two assets portfolio whose components (X,Y ) has
a copula structure C. If C is PQD, then SR(TC) ≤ SR(TΠ). If C is NQD then SR(TΠ) ≤ SR(TC).

4 Numerial results
The copula-based Sharpe ratio cannot be written as a closed formula for many copulas. In
the following, we calculate the Sharpe ratio of a two assets portfolio for some copulas using
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Table 2: Estimated values of the Sharpe ratio for three portfolios

Portfolio Weight Independence Emprical method Copula method

Portfolio (1)

0.2 0.0118 -0.0088 0.0110
0.4 0.0164 -0.0066 0.0144
0.6 0.0200 -0.0036 0.0173
0.8 0.0206 -0.0001 0.0189

Portfolio (2)

0.2 0.0235 0.0043 0.0200
0.4 0.0424 0.0197 0.0320
0.6 0.0572 0.0346 0.0436
0.8 0.0630 0.0477 0.0539

Portfolio (3)

0.2 0.0369 0.0191 0.0344
0.4 0.0548 0.0361 0.0487
0.6 0.0644 0.0488 0.0582
0.8 0.0654 0.0556 0.0622

the Monte Carlo simulation. We use the copulas Π, M , W , normal, Clayton, Frank, Gumbel
and Joe. The level of dependence is fixed for each copula in terms of its Kendall’s τ ∈
{−1,−0.9,−0.5,−0.1, 0, 0.1, 0.5, 0.9}. By solving the equation τ(θ) = τn for θ, where τn is the
empirical version of the Kendall’s tau of the simulated data, the corresponding parameter of each
copula is computed. For computing the Sharpe ratio of a two assets portfolio T = wX +(1−w)Y ,
we consider three cases for marginal distributions: Normal (57 ,

25
49) for symmetric case, Beta(5, 2)

for left skewed case and Exp(57) for right skewed case. To eliminate the effect of the numerator
in the Sharpe ratio, the means of the marginal distributions are considered the same. Table 1
presents the values of the Sharpe ratio. It can be seen that the value of the Sharp ratio decreases
with increasing of the dependence of the returns of the portfolio components. At a fixed level of
dependence, the Sharp ratio for the case where the marginal distributions are skewed is greater
than for the case where the distributions are symmetric.

5 Data Analysis

In this section, we use a real data sets to compare the copula approach and emperical method
for calculating the Sharpe ratio. We use three European exchange rates include, GBP/USD,
EUR/USD, and CHF/USD and create three portfolios: (1) (GBP/USD, EUR/USD), (2)
CHF/USD, EUR/USD and (3) (CHF/USD, GBP/USD). The analyzed period was from the 1st of
July of 2010 to the 1st of June 2021 in monthly frequency. Data selected from finance.yahoo.com.
To calculate the Sharpe ratio using copula, first a suitable marginal distribution is selected for each
return and in the next step, a suitable copula structure will be selected for each pair of portfolio
components and the Sharpe ratio is calculated by the formula (2.1). The goodness of fit tests showed
that the Logistic distribution is a good fit for GBP/USD and CHF/USD returns and Student-t
distribution for EUR/USD returns. The copula goodness-of-fit tests suggest that the Frank copula
is the best fit for the returns structure of portfolio 1 and 3 and the Student-t copula is the best fit
for the returns structure of portfolio 2. For comparison, the Sharpe ratio of three portfolios was
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also calculated under the assumption of independence of returns and the usual empirical method.
Table 2 shows the result. We can see the overestimation of the Sharpe ratio calculated under the
assumption of independence and underestimation with the usual empirical method that is due to
the dependence between returns.
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Abstract

Copulas are important tools to construct multivariate distributions using their marginals.
These functions provide a flexible way to measure the strength of dependency structure among
variables. In many cases, the parameters of the marginals and copula are a response related
to a set of covariates. Considering the covariates affect in the accuracy of copula parameters
estimation. Generalized additive model (GAM) is a flexible models which capture a linear and
non-linear relationships between response and explanatory variables. In this paper application
of GAM model in copula is investigated. Next, using copula GAM the best model is determined
for analyzing diabetic patients in Ilam province.
Keywords: Copulas, Copula Regression, Generalize additive model, Diabetes.

1 Introduction
Copulas are standardized multivariate distributions with uniform margins which represents the
dependency structure among variables. Copula was first introduced by [12] and profoundly
explained [9]. Copulas have a wide range of applications such as environmental applications ([10]),
finance ([2]), economics ([11]), medicine ([8]).
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In many cases, there are situations where the investigated variables are also determined under
the influence of covariates. In such situation, estimating the parameters of copula functions without
taking into account the effect of these variables causes a waste of information. By considering
the marginal distribution and using generalized linear models, the parameters of the marginal
distributions can be estimated and based on them, the parameter of the copula function can be
estimated ( [4]). Regression approach is one of the statistical techniques widely used to study
the relationships among variables. This technique has a few assumptions (linearity, normality …)
that should be checked before fitting the model. Copula regression is a general extension of linear
regression which the fitting model doesn’t require to check the probability distributions. Here, we
utilized copula to model the relationship between two correlate responses, which they are related
to covariates [5]). In this line, the marginal parameters play appearance in the role of a response
variable y related to covariates to be modeled as functions of the explanatory variables. Generalized
Additive Model (GAM) is a non-parametric model, and was introduced by [3]. In GAM the smooth
function is used to control the linear and nonlinear relationships between response and covariates.

Diabetes is a chronic disease, non-epidemic disease that costs a lot of money in each year. Based
on the chronicity and lack of diabetes’ definitive remedy, determining the influential factors on
diabetes is one important issue to manage of this disease. Because linear function would not assign
the effect of predictor on response, GAM is suggested. Two criteria for diagnosing diabetes are
Glycosylated Hemoglobin (HbA1c) and Fast Blood Sugar (FBS). Since the analysis of relationship
between HbA1c and FBS is one of the important results in diabetes modeling, therefore study of
the dependency structure of these factors is demanded. In this paper, using copula additive model,
a model is constructed for analyzing diabetes type II. In this way, two factors HbA1c and FBS
along with a set of covariates, were selected to analyze the correlation structure of diabetic patients
in Ilam province.

This paper is structured as follows: in Chapter 2, GAM model is briefly reviewed. In the
Chapter 3 the copula model along with application of GAM in parameters estimation is presented.
The copula GAM model is applied to diabetic patients in Ilam province. A Main results of the
paper is given in Section 5.

2 Generalize Additive Model

Generalized Additive Model (GAM) is form of the generalized linear model (GLM) model that
controls the linear and nonlinear relationships between dependent and independent variables
([3]). In GAM, the smooth function of quantitative variables connected with the link function
of dependent variable. The major difference between additive and other models is to use smooth
functions in additive model. Regarding the smooth function s(.), the structure of GAM is as
g(µi) = X ′

iβ +
∑m

i=1 s(xij), in which µi = E(Yi) and X ′
i is the i-th predictors. If covariates be

qualitative, s(.) be the Identity function and for quantitative covariates are smooth functions. To
determine the non-linearity effect of quantitative covariates effective degrees of freedom (edf) can
be used. The edf > 2 implies high nonlinear significant effect, 1 < edf ≤ 2 shows weak nonlinear
and edf ≤ 1 denotes to linear effect.
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2.1 GAM for Location, scale and, shape

Supposed that f(x; θ, ϕ) is belongs to exponential family of distribution with density function

f(x; θ, ϕ) = exp(
θx− b(θ)

a(ϕ)
+ c(x, θ))

Where a(.), b(.) and c(.) are arbitrary function and and are Location and Scale Parameters,
respectively. In Generalized Additive Models for Location, Scale and Shape (GAMLSS) each
parameter appearance in the role of a response variable y related to covariates to be modeled
as linear/non-linear or smooth functions of the explanatory variables.

{g1(µ) = X1B1 +
∑k1

i=1 si1(xi1)

g2(σ) = X2B2 +
∑k2

i=1 si2(xi2)

g1(ν) = X3B3 +
∑k3

i=1 si3(xi3)

g4(τ) = X4B4 +
∑k4

i=1 si4(xi4).

(2.1)

Where, gi(.) is link function and identified based on based on family of marginal distribution.

3 Copula Function

Copulas are multivariate functions that link univariate uniform distribution for construction
multivariate distribution. Copulas describe the dependency structure of variables through
multivariate distributions. Supposed that H(x,y) be the bivariate distribution with marginals H(x)
and G(y), [12] showed there is copula function C(.) such that H(x, y) = C(F (x), G(y)). If the
marginals be continues, the copula will be unique. Density copula c(.) is related to copula C(.)

based on c(u, v) = ∂C(u,v)
∂u∂v and using copulas some correlation measures like Spearman and Kendall’

τ are obtained ρs = 12
∫ 1
0

∫ 1
0 [C(u, v)− uv]dudv and τC = 4

∫ 1
0

∫ 1
0 C(u, v)dC(u, v)− 1, respectively.

Because of a simple mathematical equation and variety of dependence structures based on
deference type of copula families, these function became a popular tool for modeling dependencies
structure of random variables. Some families of copulas are Clayton, Joe, Gumbel, Ali-Mikhaeel,
Frank and Gaussian ([10]).

3.1 Parameter Estimation

Besides of ordinary approaches in estimates the copula parameters like IFM ([9]), in copula Additive
Regression Model (GAM) estimation of copula parameter is related to covariates effects. In this
way, first, the link function is chooses and using GAM model the parameters are predicted in terms
of covariates. Supposed that each marginal has two parameters, the joint cumulative distribution
function (cdf) reduced as

H(x, y |Θ) = C(FX(x|θ1, σ1), GY (y|θ2, σ2), θ) (3.1)
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where the parameters modeled by 2.1. Using 3.1, he maximum likelihood function obtained by
ℓ(Θ|x, y) =

∑n
i=1 log{c(FX(xi|θ1i, σ1i), GY (yi|θ2i, σ2i), θ)}, Where Θ = (θ1, σ1, θ2, σ2, θ)is the vector

of marginal and copula parameters.
Because of using non-linear relationships in GAM, to overcome the effect on smooth of nonlinear

effect, [7] introduced penalized maximum likelihood function, ℓp(Θ) = ℓ(Θ)− 1
2Θ

TSλΘ, where Sλ =
diag(λθ1Dθ1 , λθ2Dθ2 , λθ3Dθ3 , λθ4Dθ4) and D is a conventional integrated square second derivative
spline penalty ([13]).

4 Data Study

This research is a cross-sectional study and performed on diabetes-type II patients referred to the
physician’s office in Ilam in 2019. One of the diagnostic criteria for diabetes is using of Glycosylated
Hemoglobin (Hba1c) and Blood Sugar (FBS). According to the stress and difficulty of each of these
two dependent tests, one of the tests can be performed and the amount of the other test can
be predicted. Moreover, each of these criteria depends on some covariates which they can be
effective in increasing the accuracy of prediction. Here we used copula additive regression to model
the structural dependency of HBA1C and FBS where the marginal’s parameters are related to
covariates via structured additive predictors. The covariates are several risk agents for diabetes-
type II and choose based on Can Risk checklist. Considering this checklist the covariates regarded as
Gender, Diastolic blood pressure, high blood pressure, daily walking, Age, Systolic blood pressure
(Sbp), Mean Corpuscular Volume (MCV), and Body Mass Index (BMI).

The sample size was obtained by equation n ≥ (2−2ρ2+ε
ε )(K + 1) ([1]), in which ρstand for the

correlation coefficient among predictors, ε fall within the range of (0.05ρ2, 0.2ρ2) and K refers to
the number of predictors. Using previous studies ρwas considered as 0.77, ε regarded as the middle
point of its interval 0.125ρ2, and K regarded as 8. By replacing the determined values, the sample
size is attained at least 96, where 156 subjects were choosen.

To fit the copula function, first the marginal distribution functions must be identified. Due
to the positive support of HbA1c and FBS, Gamble, Gamma, Exponential, Weibull, Logistic and
log-Normal distributions were selected. All distributions were fitted to the data where the p-value
and Akaike (AIC) corresponding of each distribution summarized in table 1 According to this

Table 1: P-values and AICs of fitting marginal distributions to HbA1c and
FBS

HbA1c FBS
Distribution AIC P-Value AIC P-Value

Gumbel 614.872 0.991 1737.772 0.993
Gamma 552.942 0.757 1696.409 0.470

Exponential 1035.144 0.000 1975.602 0.000
Weibull 579.507 0.468 1695.906 0.308
Logistic 571.035 0.264 1704.341 0.101

Log-Normal 555.213 0.780 1700.553 0.690
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table, Gamma distribution with p-value over than 5 % and the minimum values of AIC is relatively
better than the other distributions for both marginals. This analysis is conducted through gjrm
package in R version 3. 6, where the density of Gamma given by the density of gamma given by

fY (y|µ, σ) = 1

(σ2µ)1/σ
2
y

1
σ2 −1

e−y/σ2µ

Γ(1/σ2)
with

E(Y ) = µ and V ar(Y ) = σ2µ. For estimation of the parameters of the marginals GAM model
was fitted to the data where the results of fitting on qualitative predictors summarized in table
2. Note that the qualitative predictors enter the model without any changes. According to this

Table 2: Results of fitting GAM for qualitative predictors to HbA1c and
FBS

µHbA1c µFBS σHbA1c σHbA1c

B value P-value B-value P value B value P-value B-value P value
Constant 9.30 0.000 146.27 0.001 -1.53 0.63 0.99 0.00
Gender -0.170 0.582 -3.25 0.774 -0.27 0.99 -1.03 0.65
Dbp -0.170 0.395 1.75 0.724 - - - -
Hbp 0.565 0.037 21.62 0.049 -0.28 0.77 -0.05 0.75

Daily walking -0.529 0.023 6.72 0.431 0.04 0.99 -0.53 0.73

table Hbp has significant effect on the level of HbA1c and FBS and Daily walking has significant
effect on the level of HbA1c .The results of fitting on quantitative predictors summarized in table
3. According to this table, MCV and BMI have significant and linear effect on HbA1c .

Table 3: Results of fitting GAM for quantitative predictors to HbA1c and
FBS

µHbA1c µFBS σHbA1c σFBS

edf P-value edf P value edf P-value edf P value
s(Age) 0.01 0.582 0.01 0.99 0.01 0.74 0.00 0.94
s(Sbp) 0.01 0.395 0.01 0.99 0.01 0.99 0.00 0.99
s(BMI) 0.565 0.037 0.01 0.50 - - - -
s(MCV) 0.529 0.023 0.01 0.50 - - - -

The positive correlation between HbA1c and FBS (0.561, p-value=0.000) suggests the used
copula must cover the upper Frechet-Hoeffding bound which always results maximum positive
correlation. So, some copulas are selected which Table 4 presents the AIC for each fitted copula.
It can be seen that Frank copula with AIC=2167.83 is the best copula for modeling the structural
dependency of diabetes in Ilam province. The following table shows the parameter estimation of
this copula function based on covariates. Based on table 5 allvariables have significant effect on
copula parameter which Age and Sbp have linear effect (0 ≤ edf < 1). By using the obtained
copula and estimating the marginal distributions, the mean prediction and 95% CI for Hba1c and
FBS are shown in the table 6. It can be seen that the high accuracy prediction based on the copula
function and the effect of covariates.
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Table 4: Results of fitting GAM for qualitative predictors to HbA1c and
FBS

Gaussian Clayton Frank Ali-Mikhaeel Joe Placket Hugaard Gumbel
AIC 2172.09 2185.28 2167.83 2177.49 2181.75 2167.63 2174.62 2174.62

Table 5: Results of fitting GAM for qualitative and quantitative predictors
for Frank parameter

qualitative quantitative
B value P-value edf P-value

Constant 11.15 0.000 s(Age) 0.52 0.00
Gender -4.93 0.000 s(Sbp) 0.53 0.00
Dbp -1.78 0.000
Hbp -1.78 0.000

Daily walking 0.02 0.000

5 Main results
In this paper Additive regression combined with copula function to prediction the level of
Glycosylated Hemoglobin (HbA1c) and Fasting Blood Sugar (FBS). Based on AIC and P-value,
among fitted distributions and copulas , Gamma selected as the best distribution for marginals
and Frank chosen as a best copula for modeling of diabetic patients in Ilam province. The results
of comparing mean prediction of HbA1c and FBS with mean observed showed the copula additive
regression could better explained the structural relationship among variables.
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Abstract

The complex systems are of great importance in many real situations. Here, a system
consisting n elements each having ℓ dependent components is considered, and the reliability of
such system is discussed under degradation performance. It is assumed that the degradation of
each component follows a Wiener process and the dependence structure within the components
is described by a flexible copula-based multivariate model. Also, it is supposed that system
has a k-out-of-n structure, and the components of each elements constitute a series system.
A simulation study is provided to illustrate how the dependence of components within each
element affects system reliability.
Keywords: Copula function, Complex system, Degradation, Wiener process, System
reliability.

1 Introduction
One of the most important coherent systems widely discussed in the reliability literature is the k-
out-of-n system. This system works if and only if at least k of its elements work. Such systems have
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various applications in engineering such as the multidisplay system in a cockpit and the multipump
system in a hydraulic control system. For more details, we refer to [11] and [12].

In many systems, degradation is one of the main causes of system failure. Degradation provides
an efficient way for studying some highly reliable systems when observations of failures are rare. In
the literature, the degradation of a single component is often modeled using stochastic processes
such as the Wiener process. [10, 9], gamma process [13] or Inverse Gaussian (IG) process [4]. Based
on a degradation performance, the lifetime of a component is defined as the first passage time at
which the degradation measurement reaches or exceeds a predefined threshold. In recent years,
utilizing degradation data to predict k-out-of-n system reliability has become more important
than ever before. This is because the degradation analysis uses more information than lifetime
data analysis, and aims to characterize the underlying failure process. Nezakati and Razmkhah
[7] investigated the reliability of a load sharing k-out-of-n degradation system with dependent
competing failures. Zhang et al. [14] analysed a degradation-based state reliability modeling for
k-out-of-n systems with multiple monitoring positions.

The past related works assumed that the system consists of n individual elements. However, an
engineering system may build from elements each containing multiple dependent components. In
recent years, the modeling of the dependent components via copula function has received a great
deal of attention, mainly due to the flexibility of copula function. Stochastic degradation process
models to the multivariate domain using copula function expanded by Fang and Pan [2]. Peng et
al. [1] analyzed the copula-based reliability of degrading systems with dependent failures. Recently,
Saberzadeh and Razmkhah [8] studied the reliability of some complex system under degradation
performance.

In this paper, a degrading complex system consisting of n independent elements each having ℓ
dependent components is considered. The components are assumed to constitute a series system,
and all elements form a k-out-of-n system. Here, we study the reliability function of such complex
system under degradation performance. Toward this end, a Wiener process is considered for the
degradation of each component over time. Also, the dependence structure within the components
is described by copula function.

The rest of this paper is organized as follows. Section 2 introduces the copula models for
multivariate degradation processes. Section 3 describes the complex k-out-of-n:ℓ series systems with
dependent degrading components in details. In Section 4, the reliability of the proposed system
is derived. Some numerical results are presented in Section 5. In Section 6, some conclusions are
stated.

2 Preliminaries
A copula is a function which joins a multivariate distribution function to its one-dimensional
marginal distribution functions. Let X = (X1, X2, ..., Xℓ)

T be a ℓ-dimensional random vector with
marginal cdfs F1(x1), F2(x2), ..., Fp(xℓ) and H be their joint cdf. According to Sklar’s theorem [6],
there exists a unique copula C(·) such that, for all x1, x2, ..., xℓ in R,

H(x1, x2, ..., xℓ) = C(F1(x1), F2(x2), ..., Fℓ(xℓ)). (2.1)
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It states any multivariate distribution can be decomposed into a copula and its marginals. Thus,
copula functions offer a much more flexible method to study multivariate distributions. The survival
copula, C̄(·), as defined in [5], is given by

C̄(u1, u2, ..., uℓ) = 1 +

ℓ∑
k=1

(−1)k
∑

1≤i1≤i2≤...≤ik≤ℓ

Ci1i2...ik(ui1 , ui2 , ..., uik), (2.2)

where Ci1i2...ik(ui1 , ui2 , ..., uik) stands for the marginal of C(·) related to a k-combination of
{1, 2, ..., ℓ}. In a bivariate case, the survival copula can be expressed as follows

C̄(u, v) = 1− u− v + C(u, v).

Thus, the survival function of X = (X1, X2)
T is given by

H̄(x1, x2) = P (X1 > x1, X2 > x2) = 1− F1(x1)− F2(x2) +H(x1, x2).

Among all copulas, there is a popular family of copulas called the Archimedean family. This family
admits explicit formulas and allows you to model variable dependence through an association
parameter. In this paper we consider one of the widely-used copulas in the Archimedean family
called Gumbel copula. For ℓ-dimensional case, it is given by

Cλ(u1, u2, ..., uℓ) = exp
{
− [(−ln u1)λ + (−ln u2)λ + ...+ (−ln uℓ)λ]

1/λ}
,

where λ ∈ [1,∞) is an association parameter, which is used to measure the dependency between
variables.

3 Model description
Consider a system with n elements each containing ℓ components that degrade over time. Suppose
that the components of each element are dependent but the elements of system work independently.
In such a system, the components are assumed to constitute a series system, and all elements form a
k-out-of-n system, that is, the system works if and only if at least k of its elements are functioning.
Such a system is called as a complex k-out-of-n:ℓ series system. Assume that the deterioration
measures of the hth (h = 1, 2, ..., ℓ) component of the ith (i = 1, 2, ..., n) element can be regarded
as a time-dependent stochastic process Xh

i (t) for all t ≥ 0. We call a component failed (state = 0)
whenever its degradation reaches or exceeds a threshold level, otherwise it is working (state = 1).
Suppose the vector ω = (ω1, ω2, ..., ωℓ)

T is the pre-defined thresholds of the components. Therefore,
at time t, the hth component of the ith element with degradation Xh

i (t) is in working state, if
Xh

i (t) < ωh, and it is failed if Xh
i (t) ≥ ωh, for i = 1, 2, ..., n and h = 1, 2, ..., ℓ. Let us denote the

state of the ith element at time t by si(t). Due to the series structure of components, an element
is in working state if all its components are working, i.e.

si(t) =

{
1, if X1

i (t) < ω1, X
2
i (t) < ω2, ..., X

ℓ
i (t) < ωℓ,

0, otherwise.
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Figure 1: A complex 2-out-of-2:2 series system.

Therefore, the structure function of the complex k-out-of-n:ℓ series system is given by

Φt(s1(t), ..., sn(t)) =

{
1,

∑n
i=1 si(t) ≥ k,

0, otherwise. (3.1)

Example 1. A complex 2-out-of-2:2 series system can be schematically described in Figure 1.
This system has two elements each containing two components. The components are supported by
the same source which is seen in this figure as a black item. Therefore, the components of each
element are dependent because the working state of components is influenced by the performance of
a common source. Each element fails if at least one of its components fail. Furthermore, according
to (3.1) the system works when all of its elements work.

From degradation viewpoint, the failure time T of a component is defined as the first time when
the degradation process X(t) reaches or exceeds a predetermined threshold ω, i.e.,

T = inf{t ≥ 0; X(t) ≥ ω}.

Assume that the degradation of a component follows a Wiener process {X(t), t ≥ 0} with X(t) ∼
N
(
αΛ(t; γ), β2Λ(t; γ)

)
, where Λ(t; γ) is a real-valued function for t ≥ 0, and γ controls the time

scale. Folks and Chhikara [3] proved that the first passage time (i.e.T ) follows an IG distribution
under Wiener process. Thus, the reliability function of a component under Wiener process is
obtained as

R(t) = P (T > t) = 1− Φ

(
αΛ(t; γ)− ω

β
√
Λ(t; γ)

)
− exp

(2αω
β2
)
Φ

(
− αΛ(t; γ) + ω√

βΛ(t; γ)

)
, (3.2)

where Φ(·) is the standard normal cumulaive density function.

4 System reliability
In this section, we investigate the reliability of the complex k-out-of-n:ℓ series systems. It is assumed
that the components of each element constitute a series structure. Thus, an element fails when the
degradation of just one of its components reaches or exceeds its corresponding threshold level. In
fact, for a given threshold vector ω, the lifetime T s

i of the ith element (i = 1, 2, ..., n) is defined as
the last instant at which all of the degradation paths has not still reached its threshold level. In
other words, we have

T s
i = sup{t ≥ 0; X1

i (t) < ω1, X
2
i (t) < ω2, ..., X

ℓ
i (t) < ωℓ}.
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Let FXh
i (t)

(·, θh) shows marginal distribution function of the Xh
i (t) with associated parameter θh =

(αh, βh, γh), for h = 1, 2, ..., ℓ and i = 1, 2, ..., n. The reliability of the ith (i = 1, 2, ..., n) element
may be expressed as

P (T s
i > t) = P (T 1

i > t, T 2
i > t, ..., T ℓ

i > t)

= C̄λ

(
FT 1

i
(t;ω1, θ1), FT 2

i
(t;ω2, θ2), ..., FT ℓ

i
(t;ωℓ, θℓ)

)
, (4.1)

where C̄λ(·) is the survival function defined by (2.2) and FTh
i
(t;ωh, θh) (h = 1, 2, ℓ) stands for the the

marginal cdf of T h
i which is derived by (3.2). So, the reliability function of a complex k-out-of-n:ℓ

series system is given by

Rs(t,θ) =

n∑
i=k

(
n

i

) (
C̄λ

(
FT 1

i
(t;ω1, θ1), FT 2

i
(t;ω2, θ2), ..., FT ℓ

i
(t;ωℓ, θℓ)

))i

×
(
1− C̄λ

(
FT 1

i
(t;ω1, θ1), FT 2

i
(t;ω2, θ2), ..., FT ℓ

i
(t;ωℓ, θℓ)

))n−i

, (4.2)

where θ = (θ1, θ2, ..., θℓ, λ) is for the vector of model parameters.

5 Sensitive analysis
In this section, we study the sensitivity of the reliability function of a k-out-of-3:ℓ series system
with respect to t and λ for k = 1, 3 and ℓ = 2, 3. Toward this end, the power transformation on
the time scale Λ(t; γh) = tγh is considered, and the Gumbel copula with parameter λ is assumed as
the dependence structure of the components of each element. The graphs of reliability functions
with respect to t are shown in Figure 2 for the parameters of marginal degradation processes
θ1 = (0.02, 0.4, 0.5), θ2 = (0.02, 2, 1.3), θ3 = (0.005, 2, 2), the dependence parameter λ = 1.4,
and the degradation thresholds ω = (130, 120, 150). It is deduced that the reliability function is
decreasing in ℓ when other parameters are fixed; moreover, the reliability of a 1-out-of-3:ℓ series
system is more than a 3-out-of-3:ℓ series system.

To demonstrate how the dependence parameter effects the reliability function, we provide the
plot of the reliability with respect to λ at a fixed point t = 1000 in Figure 3. It is observed that
the reliability function is increasing in λ.

6 Conclusion
The reliability of a degrading k-out-of-n:ℓ series system was studied under Wiener degradation
process. The dependency between components was modelled by Gumbel copula. A sensitivity
analysis was done and the behaviour of the reliability function in a special example of the systems
was investigated. It was seen that the reliability function increase with respect to dependence
parameter, while it is decreasing in both of k and ℓ. The results of this paper may be extended to
the following cases:
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Figure 2: The reliability function of the k-out-of-3:ℓ series system for k = 1, 3 and
ℓ = 2, 3. .
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Figure 3: The reliability function of the 1-out-of-3:3 series system at time point
t = 1000 with respect to λ.
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1. Some other copula functions may be used to model the dependency of the components.

2. Other stochastic processes such as gamma or IG processes or even a general path degradation
model may be considered instead of Wiener process.
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